
Chapter III

Computer Science Reaches Out-- teaching
programming to the masses, 1965-1985

(part 1)

To read:

Lykos 214
Patton 325
Piscopo 342

350 re tenure issues.

A. Minimal motive for teaching undergraduates as a source of
income-- research money.

The point to be made here will be that graduate students were
already being employed in government-funded research to the
extent that was desirable for them. There is a lot of literature
about DARPA, because it led to practical products, but there were
a lot of other programs as well, with different government
agencies competing to have their own research establishments.
There was even project Themis, with its land-grant style. Faculty
had their consulting jobs on the side. Part-time computer
engineering and software development were the major sources of
income, not teaching.

The National Science Foundation did not phase out
"facilities-supported computing center" grants until 1971. By
this time, of course, computers would have been well on the way
to becoming instututional overhead, rather than just research
tools. By the end of the seventies, the NSF got back into the
game, buying VAX’s for Computer Science departments. (keenan, oh
217, pp. 21-22)

These latter type of grants, which by the 1980’s were worth
several million dollars over several years, covered a machine,
and maintainance, and support costs, to pay computer center
staff. Naturally, these jobs would have been used as de facto
scholarships for deserving students. The NSF made a couple of
dozen such grants, as "starters," to get schools into computer
science.
After the first grant, they were expected to get money from
somewhere else.

(Hedges, oh 221, pp. 8-9, 16)

Eventually, the number of undergraduates created a faculty
shortage, and this became a justification for supporting research
to keep the faculty from going off to industry (Hedges, oh 221,
p. 14)

1

The big DARPA departments spent millions of dollars annually on
computers. The more modest Prarie departments spent hundreds of
thousands. Salaries were in the single thousands. Tuition was in
the hundreds. Laboratory fees were in the single dollars. In
short, there was no sensible economic motive to promote
undergraduate computer education per se. Computers were the
determining aspect of budgets, and tuition was insignificant in
terms of computer costs.

What a computer center did need was bright young people to
program and operate the computer, and generate more grant money.

B. Accidental Recruitment and Diplomas for Hackers.

However, as soon as computer centers were on campus, and not
sealed off by security guards, undergraduaduates began
infiltrating them. Undergraduates were less pragmatically
interested in computers than graduate students-- they simply felt
that computers were neat. They turned up, talked their way in,
and were soon put to work. Over time, the undergraduates became
steadily younger, and eventually presented a fait accompli to
computer science departments which had intended to recruit only
graduate students. Eventually, these departments were forced to
set up undergraduate programs.

As a high school student and as a freshman at Harvard, in the
mid-fifties, Peter Patton was interested in ancient, medieval,
and non-western science-- in other words, in the roads not taken
by western science. Harvard’s stock answer for people with odd
antiquarian interests was apparently that they should pick
themselves a language to specialize in, and then pursue their
interests through the lens of that language. Patton was sent to a
professor who shared his interests, Professor (Daniel?) Ingalls.
Ingalls happened to profess Sanskrit. Patton was the first new
Sanskrit student in years. However, in his sophomore year, he
discovered computing by chance:

Yes, one evening about midnight I was coming home from
the Sanskrit Library... you go by this building which
was then called the Harvard Computation Laboratory; it
was like a fishbowl and inside there were three
computers: Mark I, Univac I, and, Mark IV. And so I
went in. I saw a priest in there... [a] Catholic
priest, because he was wearing a [cas]sock, and the
contrast of this struck me. Here is a person wearing a
uniform of the magistrate of ancient Rome working on
this then very modern technology. I stood there at
midnight looking at this brightly lit building. I
couldn’t resist, my curiosity overwhelmed me. So I went
to the door and knocked... and the priest came to the
door and said, yes, what did you want... I told him the
reason for my curiosity. And he said, ‘What do you do?’
He said, ‘Well I am working on the Book of Job.’ And I
said, ‘On the computer?’ And he says, ‘Yes. Do you know
the Book of Job?’ I said, ‘Yes, of course’... I
started quoting the book of Job to him in Hebrew with
an English translation after each line and he says,

2

‘Come in, Come in!’ (Laughter) And so he spent the
evening, well the morning I guess by then, showing me
how he had taken the book of Job and he had coded it in
the Hebrew letters like 11, 12, 13, 14 and 15, two
decimal digits, and he had written a program and he was
trying to classify the tri-literal Semitic stems in
Hebrew, into Elamite, Chaldee, Hebrew, Arabic stems
because at that time, this would have been ’55, the
approach for the Book of Job which has probably more
hapax legomena, once said words, than any book in the
Bible, except perhaps the Song of Solomon. But
certainly the high point is the Divine utterance in the
book of Job, chapter 38-41; since these words didn’t
occur elsewhere in the Bible and the ancient Hebrew
language is defined by the five thousand words, in the
Hebrew Bible, what we the Christians call the Old
Testament, hapax legomena had to be from some other
language. And clearly the Book of Job is the oldest
book in the Bible. Hebrew tradition says it was written
down by Moses they thought that he learned it in the
Sinai Desert in the forty years he was there and he
wrote it before he wrote the five books of Moses. So
this priest was trying to find the roots for sources,
the lexigraphical sources, in the Book of Job. (BAB OH
325, p.4-6)

The next day, Patton went back to the computer center, and talked
to Ken Iverson. In due course, he switched his major to
Engineering and Applied Physics. (BAB OH 325, p. 3-6)

Gerald Sussman’s experience at MIT, circa 1966, was similar.
As a freshman, he insinuated himself into Marvin Minsky’s
computer lab while Minsky was not there, and discovered that he
could play with the machinery without being bawled out by the
graduate students. Minsky probably knew all about Sussman by
jungle telegraph, but of course Sussman would not have known
that. At any rate, one fine day, as Sussman was working on a
program, Minsky turned up at his elbow. To Sussman’s surprize,
Minsky did not chuck him out, but on the contrary asked about the
program Sussman was writing, critiqued it, and offered Sussman a
job on the spot. (Crevier, p.88)

By the early 1970’s the recruitment of talented students had
worked its way down into high school. As Guy Steele observed:
"I was familiar with MIT’s facilities because the people there
were sort of tollerant of of young kids hanging around the
computer labs."(p. 17) Steele started as an undergraduate at
Harvard in the fall of 1972, and as a programmer at MIT’s
Artificial intelligence lab the preceding summer. MIT had a
program for teaching high-school students on saturdays. Steele, a
student at Boston Latin School, had been involved with that for
three or four years, that is, from the late 1960’s. Of course,
it can be taken as read that a nominal saturday program worked
out to writing code all week, and trying it out on the computer
on saturday. By the time he graduated from high school, Steele
had reached the point of writing a LISP interpreter, doing what
would eventually be considered college-senior-level work.

3

(Jonathan Erickson, 2005 Dr. Dobb’s Journal Excellence in
Programming Award, p. 16; Jack J. Wohr, A Conversation with Guy
Steele, Jr., pp. 17-22, Dr. Dobb’s Journal, April 2005)

Undergraduates had simply turned up and started messing around
with the computer. They had, in effect, invoked the faculty’s
premises, that good work had to be taken seriously, together
with its creator. Eventually, the faculty had to decide what to
do about them.

Once these undergraduate programmers were in place, the
emergent Computer Science faculty found itself with the same
kinds of obligations towards them that it had towards the
graduate students. Undergraduates began to be waivered into
graduate courses on an ad-hoc basis, and eventually,
undergraduate courses were instituted, one at a time. The result
was that individual departments set up bachelors degree programs
so that the undergraduates could get credit for what they were
doing. The simplest approach, of course, was simply to give such
students enough verbal encouragement that they would complete the
requirements for some existing program, such as mathematics.
However, this did not always work. One of the driving forces for
undergraduate computer science programs was the existence of
undergraduate student-workers in the computer center, noted by
Marvin Stein, who were not making progress towards degrees,
and who were in due course snapped up by the corporate
laboratories. As Stein remarked:

Another way we were losing students was the following;
as director of the Computer Center, I made it my
business to conduct a developmental program. We began
with undergraduate students and we put them to work as
computer operators. But a part of their duty was to
have in-house education, and to take the courses that I
have mentioned [an introductory computing sequence and
a numerical analysis sequence]. These students then
progressed from operators: they became consultants, and
some ultimately system programmers. This progression
went along with their educational development as well.
Of course we had attrition. I might appoint twenty
students at the beginning of every year, have ten of
them survive to their BA’s, and of those, maybe five
would come to work as graduate research assistants in
the Computer Center. We would suddenly discover that
they would leave because they were finding it difficult
to pursue their graduate degrees along the lines that
interested them. Perhaps our biggest competitor was
Bell Labs because they would hire the students and then
let them go back to some university for a year to get a
[masters] degree. (Stein, oh 90, p. 39, also see p. 37
re courses.)

Note that Stein does not make a sharp distinction between
undergraduates and graduate students as kinds of students. It
must have been assumed that anyone in the computer center had the
potential for at least a masters degree. About the only basis
upon which Stein could have been awarding stipends was superior

4

performance in regular mathematics courses. His two course
sequences were not pre-requisites but co-requisites of a
computing center job. It was extraordinary that fifty percent of
such selected students should fail to get their bachelors’
degrees.

At the undergraduate level, there was even less of an a-priori
case for computer science programs than there had been at the
graduate level. In practice, mathematics tended to blur with the
mathematically rigorous disciplines, such as physics,
engineering, and now, computer science. It was understood that
using more and better mathematics allowed one to approach
problems in other fields in a more abstract way, and therefore
saved time and effort in the long run.

A reasonable program in any of these mathematically-based
fields included so much mathematics that the mathematics
requirement (or at least the reccomendation for promising
students) was only incrementally different from the minimal
requirements for a mathematics degree. The latter were, after
all, keyed to the better sort of future secondary school
teacher. The mathematics requirements for a graduate degree in
such a field as physics might actually amount to an undergraduate
degree in mathematics. At the same time, the coursework in all of
these fields tended to be heavily "front-loaded," with the most
important courses, and most of the specific requirements, in the
freshman and sophomore years. The idea was to keep the student
working away at mathematics at full speed until he had learned
all he was going to learn. It was feared that if the pace was too
slow, the student might backslide between courses and even
between classes, forgetting what he had learned. The ideal was to
have the student spend a good three or four hours on mathematics
and related subjects which exercised his mathematics (eg.
physics), every single day from high school onwards, until he
reached his stopping point. An unusually promising student, of
the type whom professors and corporations competed for, was
likely to secure exemption from the freshman courses, or to be
allowed to "test out" of a course in the sequence somewhere.
The result was that such a student would reach the junior and
senior years with little in the way of particular remaining
requirements. The tail end of an undergraduate program in
mathematics or the sciences was much more anticlimatic than in
the liberal arts.

In the early 1960’s Jim Gray, as an undergraduate student in
mathematics at Berkeley, was free to do all kinds of things. Up
until the middle of his junior year, he was working as a grader
in the mathematics department. At that point, the department
gave him a reseach assistantship. Obviously, he must have been
running years ahead of the average student and of the
requirements. (p.11) As Gray commented: "If you are a faculty
member, and you see a bright undergraduate, this is a very good
sign. You try to grab those people because they are full of
energy and don’t know they are supposed to have a life." (OH 353,
p. 11) Gray accumulated graduate courses in mathematics. He took
courses in numerical analysis, which is both mathematics in the
strictest sense of the word, and relevent to computers. He also

5

took graduate courses in the electrical engineering department,
where they were doing theoretical computer science. (10-12) In
short, departmental restrictions were basically not operative for
someone who zoomed through the elementary courses. There was no
rule, and there could hardly have been, saying that an unusually
talented mathematics undergraduate had to apply for a graduate
degree in mathematics if he did not want to.

Departmental restrictions tended to operate on the kind of
student who, in order to specialize in computers, would need a
dispensation from the usual sophomore mathematics courses. Such a
student would literally not take a single mathematics course in
common with the promising mathematics student. He would leave
mathematics at approximately the point where the promising
student’s advanced placement cut in. The type of student on whom
such regulations operated was the type of student whom the
emergent computer science faculty would not particularly want,
someone who merely took courses, and did not contribute to the
program of research.

It is therefore somewhat mysterious that the desirable
undergraduates should have drawn a line in the sand about doing
the few additional mathematics courses required to get degrees.
It would have been much more logical for them to make a
production about having to meet the numerous liberal arts
requirements. A possible explanation is that the students in the
computer center, emergent hackers, were reverting to the type of
the old corporate computer engineers.

The hackers and corporate computer engineers held, in essence,
that there is no such thing as a higher esoteric academic
knowlege. There was a certain logic to this view. The more highly
theoretical and abstract methods of reasoning tended to lend
themselves to being reallized as general-purpose programs, the
classic example being the language compiler. It was not
necessary or desirable for human programmers to do things the
machine could do. The existence of such a program as the compiler
meant that human programmers would go and do something else, and
consequently, the formal reasoning leading to the compiler would
not be applicable to whatever they were doing, for the time being
at any rate. The hackers felt that if they should need to know
some advanced topic, they could learn it from a book. According
to their lights, one went to school as a means of gaining
practice until one’s general proficiency was such that one could
gain apprentice employment. Once a student was given a job in the
computer center, and began doing real work, he was more or less
unwilling to go back and take classes. In these terms, being sent
back to take classes was an insult, because it implied that the
student could not work independently.

Paradoxially, students of the Hacker type were willing and
even eager to take courses leading to skills of the
"get-your-foot-in-the-door" variety, of which typing and
shorthand is the classic example. The purpose of such courses was
to enable the student to make himself immediately useful in a
real workplace, while getting a chance to learn the business. In
engineering, mechanical drawing traditionally played a role
analogousy to typing and shorthand. In computer programming, it
was the common computer languages. When COBOL became available,

6

hackers wanted to learn it, simply on the grounds that it looked
like being the new shorthand. On the same principle, a hacker
was likely to be a good sport about taking courses of no
intellectual prentensions but obvious usefulness, such as public
speaking.

The professors, of course, had the opposite bias. They were
commited to the idea of a university, having foregone corporate
pay scales to pursue this ideal. They were inclined to insist on
a particular style of programming which was, insofar as possible,
an extension of mathematics. The conventional sophomore course in
mathematics is heavy on variations upon the theme of calculus:
multivariable caluculus, diferential equations, laplace
transforms, and even possibly exotica such as calculus of
variations and integral equations. (cite courant) The emergent
computer science professors did not insist on this, but were
eventually willing to substitute a course in what came to be
called "finite mathematics," that is abstract algebra, set
theory, etc. topics which were normally taught at a somewhat more
advanced level in the mathematics department. What they were not
prepared to give up was the principle that the student should
learn all mathematical topics relevent to a subject outside of
mathematics, and that he should then follow it up with a course
in the target subject which was couched in terms of this
mathematics. As applied to computer science, this meant a course
in theory of computation.

This impasse was never really resolved. The identity of the
hacker persisted. Joseph Piscopo was an example of a type of
student who was not willing to subscribe to the professors’
ideals. He wanted to be a businessman, and he was also
interested in computers. He did not start with the professorial
assumption that commerce was at least slightly vulgar. In that
light, he took what he wanted from computer science, and
discarded the rest.

Piscopo, founder of Pansophic Systems and developer of the
Panvalet file management program, went through the computer
science program at the University of Illinois, graduating in
1965, while Computer Science was still part of the mathematics
department. For him, the formal content of the program was
secondary to the chance to actually work with computers:

The mathematics background was not terribly relevant
other than the fact that the computer programming
courses at Illinois were all in the Mathematics
department. More relevant though was, I learned how to
program a variety of different machines at the
university as well as preparing me for being able to
adapt to any kind of a computer later on (Piscopo, oH
342, p. 2)

Piscopo’s younger brother graduated in 1969, by which time the
Computer Science department was independent, but it was
substantially the same curriculum.

When Piscopo graduated, he went to work at the Joliet army
ammunition plant for a year, and then moved on to Montgomery
Ward, working on things like inventory systems. By 1969, he was

7

considering going to business school. At this point, his uncle
arranged to set him up in business instead. The uncle gathered
together twenty-five friends and family, who contributed a total
of $150,000. Piscopo was apparently a hereditary businessman. His
first product, Panvalet, was a program of a type which IBM was
reluctant to produce for commercial reasons. In short, the
reasoning behind it was commercial reasoning, not mathematical or
computer science reasoning. The company started up with Piscopo’s
brother and college roommate, but thereafter, it recruited
ordinary business programmers rather than computer science
graduates. Subsequent expansion was based around aquisition,
rather than internal reseach and development. (p. 1-2, 6, 11,
13-16)

Joseph Piscopo was a businessman who happened to be interested
in computers. He was not an academic, nor, in any real sense, a
computer scientist. He was willing to play along with academic
computer scientists to a limited extent, and for a limited time,
because they had the computers. When this arrangement ceased to
be useful from his own internal standpoint, a business
standpoint, he dropped the connection, and, as far as one can
determine, never looked back.

The long-term effect of putting the computer where passing
undergraduates could look in the window was to encourage them to
simply drop in and become involved. Involving undergraduates in
the short term meant managing their relationship with the
university in the long term. Eventually, this meant dealing with
talented students who did not want to make the same kinds of
life-choices which the professors had made. The effort to hang on
to such students resulted in academic programs catering to people
who were not necessarily overly talented with computers.

8

