
Chapter 2

Building an Academic Research Community-- Computer Centers and
Graduate Students

draft of July 24, 2005

Universities got involved in computing on their own terms, not

those of outside agencies. When computers arrived in the

university, they were, for the most part, used in such a fashion

as to support the distinctive values of the university. At first

computer centers were set up to provide computational support for

academic research. Then computer-related topics were incorporated

in existing academic fields. When computer science departments

were finally set up, it would be to maintain the self-identity of

the university in the face of corporate competition. The subject

matter of computer science departments would shift around, in a

search for something which was not too corporate in orientation.

// expand this to an introductory section

When universities got their own computers, the computer

centers were likely to be extradepartmental, organized by

whatever persons happened to have relevant knowledge, experience,

and interest. The computer was usually paid for by government

funds, though not necessarily military funds. Organized training

in computer usage grew up around the computer center, simply as a

necessary outgrowth of the computer’s own functioning. As the

computer got more complicated over time, so did the training.

The extreme government financed "contract research" style of

1

MIT was not replicated at most universities. It was more

typical to spend a lot less money, and to focus more on the

university’s internal needs, rather than seeking to become

primarily a government contractor. By 1960, clear differences of

style had developed, according to the priority placed on

obtaining military funding.

The computer center at Stanford University, set up in

1952-53, was funded by the engineering school, under Frederick

Terman, and the Applied Mathematics and Statistics Laboratory.

Each organization committed $25,000 per year, more or less as an

overhead on their research programs. Most of their research

programs, of course, would have been grant-funded,and the

computer center was therefore indirectly paid for by military

funding. The computer center started off with a Card

Programmable Calculator, and got an IBM 650 in 1957. Training

was more or less ad hoc at this stage. The computer center was

rather more concerned with educating professors than with

educating students. John Herriot, the computer center director,

observed: "Of course, as you might expect, the students took to

the computers much faster than the faculty."1 In other words,

he did not have to do anything special to get in as many

students as his equipment could support. They simply arrived

automatically.2

In 1955 (?), very shortly after the MIDAC machine at the

1. BAB OH 21, John Herriot, p. 7.

2. ibid, pp.4-8.

2

University of Michigan started up, Prof. John Carr of the

Mathematics department organized a course in elementary

programming and numerical analysis. Because the MIDAC machine was

classified, Carr had to take student programs to the machine and

run them himself. A newly arrived, newly minted, Ph. D. named

Bernard Galler sat in on Carr’s course. Carr apparently did not

want to teach beginning programming over the long term, because

he immediately set about grooming Galler as a programming teacher

and researcher. Galler took over the programming course the

following term. The MIDAC console had to be declassified so

that Galler could go and work on it. The next year, the

university got an IBM 650, nonclassified, and, unlike the MIDAC,

located on campus instead of out at Willow Run. When Galler began

pushing the limits of the IBM 650’s performance, Carr introduced

Galler to General Motors, where they had an IBM 701.1

The development of a distinctive style of "land-grant

computing" is illustrated by the experience of the University of

Minnesota. Funding was treated firmly as a means rather than an

end. The emphasis was on getting computers widely used, rather

than on doing contract research for the military. The university

tended to worry about ethical considerations, rather than

becoming captivated by the academic equivalent of business

success.

The beginnings of computing at the University of Minnesota

were striking in the extent to which the university chose a

1. BAB OH 236, Bernard A. Galler, pp.4-6,7, 13.

3

politics of its own, rather than simply having one imposed on it

by apparent financial necessity. Minnesota drew on an incredible

range of financial sources _other_ than the military funding

favored by an institution such as MIT. Minnesota was consciously

egalitarian, trying to spread knowledge of computing among the

largest number of people. The university was being very

consciously true to its land-grant origins.

Marvin Stein arrived at Minnesota in 1955, the same year that

Bernard Galler arrived at Michigan. Stein was already an

experienced computer programmer, and Engineering Research

Associates (Univac) had effectively recruited him because ERA

was making a substantial gift of computer time to the university,

and someone was needed to see that it was used properly. The

university’s part of the bargain was to give Stein a tenure-track

appointment in the Mathematics department of its Institute of

Technology, and he was given tenure after a year.1

Stein launched a yearlong graduate level introductory course

in programming. The demand was such that he had to teach two

sections of fifty students each. Stein ran the class in

"semi-seminar" mode. As he described it:

I would suggest some type of exercise that would
illustrate the ideas that I was discussing. Then we
would have one student who would volunteer to
illustrate that, and actually carry out the exercise on
the computer. That student would write a report. All
the other students would receive a copy of that report
and their assignment was to do a critique of it.2

1. BAB OH 90, Marvin Stein, pp. 17, 24.

2. ibid, p. 19.

4

At the same time, another faculty member, Bill Munro, taught

another sequence in numerical analysis. Both courses involved

regular laboratory work, apart from preparing problems for

reports. There was some kind of screening requirement for the

programming course, simply to keep the numbers of students within

manageable limits. Stein could not recall the details by the

time he was interviewed, but the requirement was apparently

sufficiently porous that anyone out of the ordinary who had a

decent reason for wanting to learn about computers could get in.

That included undergraduates, and liberal arts graduate

students.1

Stein also made it known that he was available to help anyone

with a research problem which might be amenable to the use of

computers. However, he stipulated that the customers had to learn

to do their own programming, albeit with the help of Stein and

his staff. The result was that once a user did one project, he

would be disposed to come back for others. These computations

mounted up to a point beyond what ERA’s initial gift would cover.

So, in the more advanced phases of the projects, the researchers

would go out to Convair in San Diego, where Stein and the

university had a connection.2

This was not a long-term solution, of course, so the

university obtained a NSF grant for $100,000, and found other

1. ibid, pp.17, 31-32.

2. ibid, pp. 17-19, 21.

5

monies from various sources, to a total of $250,000. They looked

around, to see what they could get. There was a machine at Los

Alamos which they were offered, but it turned out to be a

fundamentally unreliable prototype.There was an offer from the

newly independent Control Data, but that was still a paper

company with a paper machine (this must have been approximately

1957-58 or thereabouts). In the end, Univac agreed to sell the

university an 1103 machine for exactly the sum of money they had

raised, rather than what it would actually cost. About 1960, the

university got another computer, a Control Data 1604, with half a

million dollars from the National Science Foundation, and a

quarter of a million from the state legislature. In 1963, the

university got a Control Data 6600. The nominal price was three

millions, but Control Data discounted it to a million and a

half, and the National Science Foundation kicked in $900,000. The

state regents borrowed the remainder.1

Stein took the computer center on a consciously

anti-commercial path. He stated his policy:

One of our restraints was that we didn’t care to be in
competition with various manufacturers with whom we had
to do business in other ways, and who were operating
service bureaus. We allowed outside use if there was
clearly some justification for it: if we had some type
of unique program, or if it was one of our students who
had received his or her degree and had gone to work for
an outside organization, and wanted to come back to do
something on the equipment that he or she had written
the program for and was familiar with... I remember
turning down offers from Honeywell to buy thousands of
hours, primarily because it seemed that we ought not to
be in competition in that way. Also, our faculty and

1. ibid, pp. 21-22, 27, 29.

6

students were making good use of the time. We were
pretty heavily loaded. We didn’t want to get into a
position where we essentially said, "Too bad for you,
but we need the money." Our system was blind as to
whether the user was paying for the usage or not. It
might have been naive of us, but that is the way we
operated. Students had as good access as research
projects that paid. And I was a little worried that
these outside users who were putting down large sums of
money would demand priorities that at that time I
didn’t want to concede to them. Maybe if we needed the
money, or if I knew more about money in those days, we
would have done it; but we didn’t.1

Make some reasonable substitutions, eg. high school for

university, auto repair for computing, etc., and this speech

could have been made by one of Garrison Keilor’s Lake Wobegon

characters. The mere expensiveness of the machine was no reason

to run it according to corporate principles.

The nature of a technology is not defined by the

circumstances of its first invention, but rather by the

circumstances of its gradual adoption and modification. Academic

computing was run by people who wanted to be part of the

university, and who implemented that desire in hardware, when and

as they could.

The first generation of graduate students interested in

computers were still affiliated with regular academic

departments. They met all the regular requirements for their

disciplines. For the time being, the introduction of computers

did not lead to conflict. However, the graduate students’

advisors, themselves often returnees from the wartime computing

programs, arranged for the students to get computer training

1. Ibid, pp. 27-28.

7

somewhere or other. This did not have to be on-campus; it might

equally well consist in being sent to a summer job at a

government laboratory somewhere. This course of instruction,

beyond programming per se, came to consist of teaching the

students how to build compilers and kindred programs, as a point

of departure for linguistics research, the same point of

departure that their mentors had reached while doing applied

research in the employ of the military-industrial complex. Thus,

this first generation replicated the precarious balance of their

elders.

When computers first arrived, their influence was limited by

their scarcity. Sometimes, graduate students got only very

limited access to computers, computer centers, and the people who

worked in them. The students got enough exposure to tantalize

them, and to yield important long-term consequences, but in the

short run, this was not enough to derail their graduate programs,

and force institutional changes. The students got their Ph.D.’s

before they started to act drastically on their new ideas about

computers.

Thomas Keenan was a physics graduate student at Purdue in

1954, when the university ordered a computer. One gathers that

the machine’s arrival was too late for him to use it in his own

research, for which he used desk calculators (he completed his

doctorate in 1955). However he attended the training sessions,

and became knowledgeable about computers. After graduation, he

got a job at the University of Rochester, Rochester was also

getting a computer, and Keenan was put in charge of the emergent

8

computer center.1

It took somewhat longer for computers to filter down to people

who were not in recognized quantitative disciplines. In 1964,

Bruce Buchanan, who had been a mathematics major as an

undergraduate, was writing his dissertation in Philosophy at

Michigan State University, on the subject of scientific

discovery. He was trying to treat scientific discovery in a

logical way, rather than as something ineffable. This is known,

in the social sciences, as "operationalizing" a concept, reducing

it to a model which is at least verbally specific (though not

necessarily specific enough to stand up to being programmed).

Buchanan had written the first half of his dissertation, which

would probably have been a literature survey. That summer,

Buchanan applied for a job as a policy analyst at System

Development Corporation. He did not get the job, but his

application got passed around to potentially interested parties--

notably Edward Feigenbaum at the Rand Corporation. Feigenbaum,

of course, was gearing up to launch the "expert systems" school

of artificial intelligence, in the wake of Newell, Simon, and

Shaw. He was naturally interested in anyone who was trying to

reduce scientific work to something precise enough to be

programmed. At RAND, Buchanan not only "...learned a lot about

computing",2 but was exposed to the unpublished or

quasi-published works of Newell, Simon, and Shaw. He met people

1. BAB OH 217,Keenan p. 3.

2. BAB OH 230, Bruce Buchanan, p. 4.

9

with more nearly kindred interests than he could find in his home

department. At the end of the summer, he went back to Michigan

State and wrote the second half of his dissertation, along lines

influences by Newell, Simon, and, Shaw lines. Buchanan then

applied to Feigenbaum for a letter of reference. Feigenbaum

offered him a job instead, and Buchanan accepted it, shelving his

plans to teach Philosophy.1

At Michigan State, Computer Science was emerging as an

undergraduate program, and as a branch of electrical engineering

(, ref harry hedges, oh 221.). One does not know how much

computer access Buchanan had before the summer of 1964, but he

would have had to fight his way through all kinds of

bureaucratic barriers to establish contact with the computer

people on the Michigan State campus who might potentially be

interested in his work.

In both cases, the incipient computer scientists were obliged

to delay doing anything substantial about their new interests.

This meant that potential conflicts with their original

disciplines did not come out into the open.

As computers became more abundant, they were used especially

by mathematics and hard science students. This, however, did not

trigger conflict. Mathematicians and hard scientists were

operating in the real world, not in an ideal one. Applied

mathematics already existed before the computer. The effect of a

shift to computer-based applied mathematics was to diminish the

1. Ibid, pp. 4-5.

10

role of routine calculation with adding machines, which the

wartime experience had shown could be done by clerks. The work

that students were doing with computers involved comparatively

ambitious projects, which had a comparatively high mathematics

content.

Gene Golub was recruited by the University of Illinois

computer center in 1953, when he had just finished his bachelors’

degree,1 and got his Ph.D. in 1959, in mathematics. In the

meantime, the mathematics department seems to have impinged on

him very little. Golub observed that mathematicians were not as

enthusiastic about computing as other fields,

"...But there was none of the hostility that you would
find at Stanford towards computing. I think people just
realized that the computer was there but they didn’t,
there was no anger in their attitude towards
computing."2

He must have taken the usual courses, examinations, etc., but

they were apparently so uneventful as not to be worthy of

mention. However, the major business of the computer center at

Illinois seems to have been numerical analysis. This worked out

to taking the mathematical unfinished business of the sixteenth

to nineteenth centuries, and recasting it in terms of twentieth

century mathematical orthodoxy. As such, numerical analysis is

essentially conservative, like teaching mathematics, and was

unlikely to attract strong animosities once the issues were

1. BAB OH 105, Golub, p. 4-5.

2. Ibid, p. 19.

11

properly understood.

Similarly, the mathematics department at Stanford had, by

about 1958, set up an alternative form of masters degree for

applied mathematicians, in which the student would program a

numerical analysis problem, and write a report on it, rather than

doing a traditional master’s thesis.1

The situation was even clearer in physics. Physicists’

approach to mathematics is of course results-oriented. They are,

perforce, applied mathematicians on the side, and the only real

question was what kind of applied mathematics.

Joseph Traub was a good example of a physicist in the process

of becoming a computer scientist. Traub’s family was a family of

German Jewish emigres, with a long tradition of producing

professional men such as rabbis and doctors. They had gotten out

at about the last possible moment. Traub’s formerly

upper-middle-class father happened to be a bank official, one of

those professions which does not travel well. He could only find

marginal employment in the United States. This kind of family is

sometimes called "sunken middle class," battered by

circumstances, and waiting for a son to grow up and get through

school so that the family can resume its former status.2 Traub

went to Bronx High School of Science, where he played chess as an

extracurricular activity. He was not interested in ham radio, but

he was interested in mountain climbing. In fact, his interests

1. BAB OH 21, John Herriot, p. 13.

2. See Jackson and Marsden, 1962, ch 2, section: "the sunken
middle class," pp. 67-70, for a discussion of this phenomena.

12

were substantially the normative ones of a European schoolboy in

a French Lycee or German Gymnasium.1

Traub went to City College on a Regent’s Scholarship, living

at home. Presumably the scholarship money went for his share of

housekeeping expense. He majored in physics and minored in

mathematics, taking advanced calculus from Emil Post. Post did

not lecture, but conducted the class as a collective oral

examination. This set a standard that Traub’s graduate school

coursework would fail to match in his eyes. Traub started

graduate school in physics at Columbia in early 1954, with a

teaching assistantship.2

Within a year or two, some time in 1955, Traub got involved

in IBM’s on-campus Watson Scientific Computation Laboratories. A

friend told him about it, and suggested he go over, and it was

apparently possible to just go in and talk to someone in

authority. The Watson Laboratory had a bureaucratic alter ego as

Columbia University’s Committee on Applied Mathematics, on which

the physics department, inter alia, was represented. In 1957, IBM

gave Traub a generous fellowship, of about $2000, with unlimited

computer time. He afterwards estimated that his thesis required

something like a thousand hours of computer time.3

Meanwhile, the physics department per se was not engaging

Traub’s energies. Physics does not have comprehensive

1. BAB OH 70. Traub, pp. 3-10.

2. Ibid, pp. 11-14.

3. Ibid, pp. 14-16, 17-18.

13

examinations in the same sense that liberal arts fields do. The

system of examinations and courses is actually a qualifying

examination system, designed to insure that students learn a

little about all of the branches of the discipline, and, further,

this is typically spread out over three years, instead of being

concentrated in the first year. There is only minimal opportunity

for specialization in the formal coursework and examinations. The

system is seemingly contrived to compel a very bright student to

spend a couple of years messing around in a laboratory, instead

of completing comprehensive exams in the first year, and doing

his dissertation research in the second.

Traub was distinctly underimpressed by the academic side of

the physics department:

... my feeling is that I learned a smattering of math,
a smattering of physics, a smattering of numerical
methods in school. But the way I really learned
something is I would get interested in it because of my
research, and then I would just gobble it up, or I
would create things. I think in some ways it may have
been an advantage that my formal training, either
because I wasn’t interested in somebody else’s agenda
or because I thought the teacher was so bad, was such a
smattering. That, in fact, if anything, may have been
helpful. But I do not feel like I had a good
education.1

At any rate, Traub describes professors who distributed copies of

their lecture notes, and then lectured from them, and gave exams

in the undergraduate fashion, and turned a blind eye to

1. Ibid, p. 17.

14

class-cutting.1

Traub did his messing around in the IBM Watson Laboratory.

Somewhere in the process, he ceased to be a physicist, but the

requirements for comprehensive examinations were apparently

sufficiently low that this did not interfere with his passing

them. When it came time to propose a dissertation topic, he

wanted to do chess (this being immediately after Arthur Samuel).

This was not allowed, of course, but he was given an equation

from physics to solve by numerical methods instead. In 1959, he

finished his Ph.D. (under the Committee on Applied Mathematics),

and went to work at Bell Labs.2

Traub was allowed to work on computers within a physics

department, but not for purposes of ceremony. Provided he met

certain requirements in orthodox physics, which did not by any

means occupy all his time, the department would give him a

credential based on these, and allow him to work on less orthodox

subjects.

M. Granger Morgan is an example of a physicist who went

through an even more complicated divergence. His story is

indicative of the sheer extent to which physics departments would

accommodate people diverging from the norm-- provided of course

that they belonged to the small fraction of the population

mathematically talented enough to be physicists. In the course of

his undergraduate work (at Harvard), and the early stages of

1. Ibid, pp. 16-17.

2. Ibid, pp. 24-25, 28.

15

graduate school (at Cornell), Morgan discovered that he had all

kinds of complicated humanistic interests. He managed to visit

Latin America on the pretext of working at astronomical

observatories in Peru and Puerto Rico, and then went off to do

Latin American history at Berkeley. However, this did not suit

him either. His humanistic interests were too eclectic, and too

focused around science and technology. As Morgan explains:

In those days there weren’t doctoral programs like the
one here [at Carnegie-Mellon] in Engineering and Public
Policy, I knew I had to have a Ph.D. in something. I
looked around and figured I could get a Ph.D. in
applied physics faster than I could get one in anything
else.1

Morgan’s former advisor from Cornell had gone to set up a new

department at the University of California at San Diego. Morgan

followed, becoming the first or second Ph.D student. In the

nature of things, his physics skills would have been highly

portable. He would have been able to pick up quickly where he had

left off when he had left Cornell, and he would not have had to

cope with the kinds of complex identity crises which are the norm

in the liberal arts. Morgan’s new thesis advisor was himself in

the process of becoming a computer scientist himself, by small

increments, to the point that he was running the campus computer

center. At any rate, Morgan, in his spare-time reflections,

became convinced of the potential of computer programming as a

1. BAB OH 224, M. Granger Morgan, p. 4.

16

means of social mobility.1

In the last year of his doctoral work (Ph. D. 1968, per cmu

department website), he launched a practical experiment. He found

a group of underprivileged teenagers, employed in a federally

funded make-work scheme, and arranged to teach them to program,

using the computer in his laboratory. It was a roaring success.

With his advisor’s encouragement, Morgan began scaling up the

program, and putting it on an institutional basis. This of course

involved doing the work of a school administrator. He then

offered a course in "technology and public policy." This again,

would have been an obviously useful thing to do, giving the

physics department an interesting and probably popular course for

the liberal arts undergraduates to take in order to meet the

science requirement.2

In due course, Morgan went on to the National Science

Foundation, and eventually, the Engineering and Public Policy

program at Carnegie-Mellon.3

Like Traub, Morgan was able to do things which were well

beyond the scope of any reasonable definition of physics. In

Morgan’s case, this meant public education and public policy, as

informed by scientific considerations. The physics department

had no special claim to these fields, any more than any other

science department. The largeness of public education and public

1. Ibid, p. 3-4.

2. Ibid, p. 4-5.

3. Ibid, p. 6-9.

17

policy practically make it necessary to treat all science and

technology as one field, rather than breaking them up into

specialities. If there had been someone in authority insisting on

the "purity" of physics, his position might very well have become

untenable.

Mathematics and Physics departments were willing to find

common ground with the emergent computer scientists. There was

practically always something that the emergence computer

scientist could do, which was interesting as a computing problem,

and was also desirable to the mathematics or physics department.

However, there were often other departments willing to make an

even better offer.

Some graduate students got involved in computing through

departments where there was an understanding of carte blanche.

Sometimes a department, or even an entire discipline, found

itself with an intellectual vacuum. The extent of degrees and

programs was often driven by the need to maintain social parity

with other people, in other fields, whose intellectual

requirements might be quite different. The department might be

forced by circumstances to expand beyond what its subject matter

could support, and if that happened, the department would be

open to almost any presentable outside subject matter which

would fill the gap.

For example, circa 1950-60, there was an understanding that a

good research masters in engineering constituted full academic

qualification. Given the basic engineering value of elegant

simplicity, the Ph.D. in engineering is inherently a bit

18

contrived. It implies that the dissertation author spends a year

without generating any results finished enough to publish. That

may sometimes be necessary, but it is a situation to be avoided

if possible. The ongoing development of abstract mathematical

methods (of which computer techniques are paradoxically an

extreme case) meant that there was less and less necessary

knowledge for a student to learn, and correspondingly less

justification for lengthening the curriculum. There is no real

tradition of monographic writing in science and engineering

generally-- the tradition is that of the journal article, often

very short, and the fruit of a month’s or a couple of weeks’

work. To make matters more urgent, undergraduate engineering

students customarily worked in a faster and more focused way than

other science students. Additionally, engineering’s underlying

basic science was mostly from the sixteenth to nineteenth

centuries. Engineering made relatively little use of modern

physics. The underlying physics of engineering can be expressed

in a page or two. The rest of engineering mathematics and physics

is mathematics commentary, which could be drastically shrunken

with more abstract methods of representation. The result was that

an engineering student who went on to graduate school would be

anything up to a couple of years more prepared, vis a vis the

material, than a corresponding physics student. An engineering

department, once it decided to start offering the Ph.D., had an

intellectual gap to fill up, and could therefore be very catholic

indeed in what it allowed students to do for a Ph.D.

Ralph Griswold, eventual founder of the Computer Science

19

department at the University of Arizona, and inventor of a couple

of programming languages, is an example of the type of student

such a department could sponsor. Griswold’s father was a civil

servant (State Department). Griswold majored in physics as an

undergraduate at Stanford, more or less by accident. He spent his

ROTC obligated service in the navy, teaching, by rote, Nuclear

Warfare, a subject he had no interest in. On the basis of this

experience, he decided that he did not want to be a teacher. When

he went back to Stanford for graduate work, he chose the

electrical engineering department, because the "... EE department

looked like it was a place that would give the opportunity to get

an unusually broad education."1 His interests went as far afield

as metaphysics, apart from the more mundane areas such as

artificial intelligence. Once he got his degree, in 1962,

Griswold moved on to Bell Labs.2

At the major autonomous engineering schools, the situation was

even more extreme. The massive flow of grant money broke down the

departmental system, superseding it with a system of

laboratories run by senior professors, who had their own direct

lines to the funding agencies. Under these conditions, it is

practically difficult to tell who was a computer scientist, and

at what date. Terry Allen Winograd arrived at MIT in 1967 with an

undergraduate degree in mathematics from a small liberal arts

college, followed by a year of linguistics study in England on a

1. BAB OH 256, Ralph Griswold, p. 5.

2. Ibid, pp. 3-5, 8-10.

20

Fulbright Fellowship. At MIT, he worked under Marvin Minsky and

Seymour Papert in the Artificial Intelligence Laboratory. His

dissertation, involving the "blocks world" was an exercise in

computer driven linguistics. He failed to engage with MIT’s

premier linguist, Noam Chomsky, who was by this time in a state

of feud with Minsky. For reasons of administrative convenience,

Winograd’s Ph.D. was awarded in Mathematics, and he was then

given a job in Electrical Engineering.1 Winograd remarked:

I honestly don’t know [about how he got an appointment
in electrical engineering]. It’s true with the funding,
too. This was the milk-and-honey days. You didn’t have
to think about that; Minsky took care of that. If you
needed slots, he got them. If you needed money, he got
it. You just did your work. Junior people didn’t think
about those issues. So, I have no idea. I mean, I said,
"Well, I’m done with my thesis, I’d like to stay on."
And he said, "Okay, we’ll make you an instructor."2

This was of course the nineteenth-century German "professor

royalty" system with a vengeance.

The intellectual openness of graduate engineering programs

grew out of the fact that engineering was in a state of

intellectual implosion. The need to find new things to do

outweighed any traditional criteria of legitimate subject

boundaries. In the last analysis, engineering departments were

willing to welcome in people who had no identifiable association

with engineering, but who were willing to do humanistic things

with computers.

1. BAB OH 237, Terry Allen Winograd, pp. 3, 5, 15, 25, 38.

2. Ibid, p. 26.

21

At the opposite end of the spectrum from engineering was

Education. For institutional reasons, education schools had

expanded far beyond their theoretical basis in psychology. The

situation was opposite from that in engineering-- children are

too complicated for theories and formulae to be of any use in

dealing with them. Getting an advanced degree in education was

something of an exercise in "ticket punching," in which teachers

got a pay increment for having a masters, and school

administrators were expected to have doctorates. As James Koerner

documented in The Miseducation of American Teachers, an Ed. D.

might very well work out to sending out questionnaires to school

districts to ask how they used school busses.1 In this climate, a

graduate student who wanted to do something-- anything-- really well simply did not have to worry about

orthodoxy.

In the early 1960’s (1963?), Dale Lafrenz enrolled as a

graduate student in the mathematics department at Minnesota,

having previously gotten a bachelors degree in mathematics

education and spent a couple of years teaching. He soon

discovered that he was not a mathematician, but rather a

mathematics educator. He transferred to the education school, and

got a job as an instructor in the university’s "laboratory" high

school. [the account is slightly unclear, but confirm this.

states that he got a math degree at Marquette in the summers]. In

1963, he and his colleagues started teaching the high school

1. James D. Koerner, The Miseducation of American Teachers, pp.
180-192.

22

students to program computers.1

At the time, the usual and customary method of programming was

to write programs, submit them to the computer center, and get a

printout back, eventually. This did not fit very well with

children’s attention spans, of course. Lafrenz and his colleagues

heard about John Kemeny at Dartmouth, made contact, and arranged

to use his interactive computer system running BASIC. Kemeny’s

computer was made by General Electric, and the GE foundation came

through with a grant to pay for the telephone charges to connect

up from Minnesota. Eventually, Pillsbury in Minneapolis bought a

copy of Dartmouth’s software, and the University high school was

able to use it, thus saving long-distance telephone charges. On

the new terms, the education school group was able to scale up

their project, and turn it into an outreach program.2 Lafrenz

spent two years running the outreach program, and then in 1970,

he moved over to Honeywell, which had decided to get into the

computer outreach business on a commercial basis.3

In both engineering and education, the logic of subject matter

and credentialism resulted in the issuance of an "intellectual

poaching license." This license was not perfect, of course, but

it was good enough for students who would sooner or later be

recruited by a major government or corporate laboratory.

The fact that graduate students were becoming interested in

1. BAB OH 315, Dale Lafrenz, pp. 4-5.

2. Ibid, pp. 6-11.

3. Ibid, pp. 11-15.

23

computers did not imply the emergence of computer science

departments. Apart from anything else, the sheer scarcity of

computers delayed the process for a few years. Even then, the

departments containing potential recruits were able to negotiate

a compromise. Finally, there were always some departments whose

internal imperatives led to eclecticism, instead of leading to

the formulation and definition of an orthodoxy.

Because of this lack of conflict in existing departments, it

was a long time before even full-blown academic interest in

computers would result in separate computer science departments.

It was possible to find common ground with existing disciplines,

even when doing things which were well within the core of what

would become computer science. And if that did not suffice, there

were always the corporate and government laboratories, which

offered substantially academic working conditions. Setting up a

department, or even an interdepartmental program, was a

comparatively complicated proposition, not to be undertaken to

solve a problem which could be solved by a professor calling up a

friend at a laboratory somewhere to find a job for an ill-placed

graduate student.

John Holland, at the University of Michigan, probably got the

first Ph.D. in computer science. This was at the level of the

near-accidental. In the late 1940’s, Arthur Burks had begun

teaching automata theory in his philosophy classes, and had

attracted students who wanted to do theses along those lines.

Many of these students were in no sense of the word

philosophers. As Burks describes it:

24

Well there was a man on the faculty named Gordon
Peterson, who had been a fellow student of mine at
DePauw, in physics. He went to the University of

Illinois, and then to the University of Louisiana, took
a Ph.D. in physics and went to Bell Labs. Then he came
here in the speech department after the war, and we
became reacquainted. He had students in the physics of
speech, phonetics, and acoustics and so forth. Then I
began to teach automata theory even in the late ’40s in
my philosophy of science and mathematical logic
courses, and so I had some students who were interested
in writing theses, basically in what we now call
computer science, though we didn’t have that name. John
Holland was the first of these students, and they
clearly didn’t fit in our departments. That is, Holland
wasn’t about to study two years of courses, to learn
history of philosophy and other philosophy courses, in
order to write a thesis on computing. And Gordon’s
students didn’t fit in his speech department, which was
oriented toward speech and drama. So as a consequence,
Gordon and I organized or started to organize the joint
program in Computer and Communication Sciences,
bringing in other people. In 1957, we got permission
from the graduate school to give masters degrees and
Ph.D. degrees, even though we didn’t have any budget
other than our research project budgets.1

This case arose only because Burks had a double identity as a

consequence of the war, that of philosopher and engineer. If

Burks had gotten his joint appointment in Philosophy and

Engineering at the University of Pennsylvania, he might not have

needed to go to such lengths, since, as we have noted,

engineering schools were fundamentally permissive about what

capable graduate students could do.

People differently situated did not face such an early crisis.

For example, there were mathematicians doing theory of

computation. Stephen Cook got his Ph.D. at Harvard in 1966, with

1. BAB OH 75, Arthur W. Burks, pp. 106-107.

25

a dissertation on the complexity of multiplication. There was a

whole cluster of people around him doing similar work. Cook then

got a position at UC Berkeley. He was denied tenure in 1970. By

this time, his "natural colleagues tended to be in computer

science departments."1 He immediately got hired to tenure at

Toronto, in Computer Science. By this time, of course, the

convention was establishing itself that computer science

departments were where computational theorists lived, and there

must have been a sense that they should go and take those jobs,

and leave the other jobs to other kinds of people.2

One of the givens was that there was an ongoing brain drain

from the universities to the better government and corporate

laboratories in all of the technically-oriented fields. The

overwhelming majority of incipient computer scientists went off

to a laboratory as soon as they got their Ph.D.’s. Likewise, the

laboratories were not very particular about paper credentials.

There were still only a handful of academic computer scientists

or near-computer scientists-- perhaps several hundred or fewer

advanced/committed graduate students in the middle sixties. By

comparison, the corporations were huge, and could easily absorb

anyone they could persuade to join them. A capable student in a

relevant field who got into difficulties with academic rules and

regulations could always go off to a laboratory. At Harvard, the

mathematician and complexity theorist Alan Cobham actually

1. BAB OH, 350, Stephen Cook, p. 12.

2. Ibid, pp. 6-8, 12-13.

26

completed all the work for Ph.D., except for a secondary thesis

in a minor field, but at that point, he went off to IBM.1 At

Minnesota, Marvin Stein’s motive for eventually starting a

computer science department was mostly to contain the brain

drain, which resulted when students simply would not take course

they did not see any use for, or prepare for examinations which

likewise seemed pointless. As Stein put it:

"I really felt that it would be difficult, if not
impossible, to build up the staff properly and to
retain the staff without a program, a solid program, in
computer science in the university while the students
that we had developed were going off to Bell Labs and
other places."2

The result was that, by the early 1960’s, after twenty-odd

years of academic involvement with computers, there were still no

computer science departments, and only a handful of

interdepartmental degree programs. There were simply too many

forces siphoning off potential students. Every institution wanted

to get involved in computers, and every institution made what

accommodations it could make without compromising its basic

mission.

The emergence of computer science as an academic discipline

was driven by the need of the new field to differentiate itself

from its principle competitors for manpower, the industrial

laboratories. At first, computer science was merely a response to

1. BAB OH 350, Stephen Cook, p. 6.

2. BAB OH 90, Marvin Stein, p. 40.

27

the technological obsolescence of applied mathematics as an

academic field. This was reflected in the graduate-only character

of the first programs. However, the need to retain graduate

students led to an abortive foray into artificial intelligence.

Attempts to approach problems in a theoretical way turned out to

lead to alarmingly practical tools, which lead their developers

back towards industry. By a process of trial and error, computer

science drifted into the production of open source software, and

the revival of engineering radicalism.

The break from the previous status quo came, oddly enough,

from the most traditional form of academic computing, the use of

computers in applied mathematics. New software was superseding

the traditional role of the academic computer expert as applied

mathematician. The applied mathematicians responded by going into

computational linguistics. This was a stabilizing response, which

avoided greater changes.

By the early 1960’s, the early and improvised computers were

being replaced by standard computers of greatly improved

performance produced by major corporations, and these computers

case with service contracts and standard software, especially

high-level programming languages such as FORTRAN and ALGOL. Such

languages could be taught in a course of only two or three

semester hours. An extensive course in applied mathematics could

be covered in fifteen semester-hours, provided that the students

could do their programming exercises in FORTRAN or ALGOL. The

conditions were ripe, in short, for applied mathematics and its

associated computer programming to be re-absorbed by

28

mathematics. On the whole, FORTRAN or ALGOL code compared

reasonably favorably in "mathematical density" with other forms

of mathematical writing. Problems which contained little in the

way of mathematical novelty could now be dealt with in an

appropriate place-- undergraduate courses.This would become even

more emphatically the case in a few years when new languages such

as SAS and SIMSCRIPT came to embody the specific technique of

large sections of applied mathematics. Like the engineer in

Kurt Vonnegut’s Player Piano, the computer experts had invented

themselves out of a job. Thanks to their efforts, there was no

longer a mathematical justification for a separate field of

computers.

Computer science, perforce, defined itself in terms which

were, at first sight, only tangentially related to the things

which computers were actually being used for in the university.

That is, computer science was defined around computational

linguistics, and eventually, artificial intelligence. However,

what computers were actually being used for was applied

mathematics. As Gupta1 notes, following Conte, eight out of ten

of the members of the computer science department at Purdue,

circa 1964, held joint appointments in the mathematics

department. Only a handful of disciplines used mathematics

extensively enough to get in the position of formulating

mathematical problems which were not readily solvable by paper

and pencil methods. These disciplines tended to train their own

1. G. K. Gupt, "Computer Science Curriculum..., 2004, p. 6

29

applied mathematicians, many of whom would eventually become

computer scientists. While George Forsythe claimed a diverse

background for the members of the Computer Science department,

nine out of ten had Ph.D’s in either mathematics, physics, or

engineering.1 They came from the disciplines which cared about

mathematics enough to really make their members learn

mathematics.

The first aspect of computer science, computational

linguistics, was about creating programming languages. This was

at least a reasonable outgrowth of applied mathematics in the

sense that a programming language could be a sort of framework

into which to install applied mathematics software. It would give

the emerging computer scientists a breathing space to adapt to

new conditions. The identity of the applied mathematicians in the

process of becoming computer scientists was probably as much a

matter of social relations of production as it was of subject

matter per se. They had all the organizational baggage of

computers, and funding, and staff to use the computers. It was

not very important if the computer center started producing

software instead of calculations. If an applied mathematician

could learn computer science by small increments over a period of

years as it was invented, while continuing to work with the same

people, maintaining the same standards of mutuality and

cooperation, he might become a computer scientist without ever

experiencing any sense of change. Computer Science was rather a

1. Ibid.

30

case of "things must change to stay the same."

From the standpoint of running the new graduate programs in

Computer Science, there was no immediate need for undergraduate

programs. Computer Science graduate students were naturally

selected from persons already possessing sufficient liberal

education and mathematical and linguistic background. The

necessary requirements in those areas for an academic researcher

were already compatible with undergraduate curricula. That is, a

prospective Computer Science student could earn a bachelor’s

degree in one of the antecedent fields, such as mathematics or

psychology, without thereby overspecializing, and could then set

about learning other fields relating to Computer Science. Thus,

there was no real need to set up undergraduate Computer Science

programs. Some computer science departments (notably Stanford)

acted on that principle, and stuck to it. As William F. Miller

of Stanford explained:

We spent a lot of time making sure our graduate
students were well prepared. We did not develop an
undergraduate major; we had curses [sic] for
undergraduates, but we concentrated on graduates and
research areas as far as our majors were concerned. I
think that was a good move on our part... So, I
wouldn’t find it necessary to find a computer science
major. I think our program here of a major in the
mathematical sciences where students can take a
concentration in mathematics or statistics or
operations research or computer science but still get a
broader major is adequate preparation for any of those
subjects. I’d probably stick with that idea.1

As late as 1967, this view retained popularity, and the reports

1. BAB OH 29, William F. Miller, pp. 7-8.

31

on undergraduate curricula were challenged on the same grounds.

(note for example L. Fulkerson’s letter, CACM, mar 1967).

This was in keeping with the broader strain of academic

thinking. The authors of academic white papers tended to view the

undergraduate professional program, on the model of engineering,

as an anachronism. The whole sense was "become a liberal art or

get out." In 1968, Lewis B. Mayhew, who was professor of higher

education at Stanford, wrote, in his "The Future Undergraduate

Curriculum,"(1968) that by 1980:

vocational training will gradually cease being a major
preoccupation of the undergraduate schools. Much of the
technical training needed even in such complex fields
as electronics will be provided by employers who alone
will be able to provide the newest equipment with which
to conduct training.1

The minor liberal arts professions, such as education and

journalism were to be moved up into graduate school, on the model

of the MBA in business. In any case, Mayhew emphasized that

"possibly five or ten percent of the adult population can man

the entire productive enterprise."2 Under the circumstances,

undergraduates did not look like a particularly impressive labor

pool.

The immediate requirement facing Computer Science was simply

to find a way to hang onto the founders’ graduate students, who

at this stage, were mostly doing applied mathematics. The

1. Mayhew, in Eurich, 1968, p. 210.

2. Ibid, p 211.

32

immediate adaptation was to have them do much the same kind of

work that they had been doing, only in a more ambitious form to

reflect the better programming languages which were now

available. Undergraduates were left out for the time being,

because they did not present a key labor shortage issue.

Part of the ongoing identity crisis of academic computer

science was how to differentiate itself from industry. Graduate

students were perpetually being recruited by industry, with

extremely good pay and working conditions. The very nature of an

academic department mode it impossible to match the terms offered

by industry. The founding of computer science departments did not

solve this problem. At most, students waited until finishing

their Ph.D.’s before going off to industry. To hang on to them,

to maintain a collective group identity, it was necessary to come

up with something that corporations could not or would not do.

Artificial intelligence, the more radical fork of computer

science, was, among other things, an attempt to meet this

requirement. Computer science had to be defined as a liberal art,

rather than an engineering discipline, because the liberal arts

aspects were the only real reason for working in a poorly funded

university rather than a munificent government or corporate

laboratory.

The early artificial intelligence researchers were not in

universities. Artificial intelligence was nothing if not

prodigal of computer power, and the artificial intelligence

researchers tended to go someplace where they could have more

direct access to powerful computers. When the applied

33

mathematicians in the universities decided that artificial

intelligence was going to be the capstone of computer science,

they had to import artificial intelligence researchers, as in the

case of George Forsythe bringing in Edward Feigenbaum at

Stanford in September 1964, fully three months before the

Computer Science department came into being. Similarly, John

McCarthy had been recruited from MIT to Stanford in 1962, with

the offer of a laboratory of his own. The artificial intelligence

experts must have been more than usually difficult to recruit--

no doubt it was necessary to have everything lined up, with a

department in being, and the funding in place, before they would

commit themselves.1

The championing of a computer science rooted in artificial

intelligence was not the sort of organic growth that programming

languages were. However, it was seemingly well suited to

maintaining the identity of Computer Science departments against

corporations. Artificial intelligence tended to draw on the full

range of the university, not just on the technical faculties.

Then too, businesses were more inclined to be leery about

extravagant claims. A business’s culture was in some part formed

by people who handled other people’s money, and who were inclined

to worry about not crossing a line representing embezzlement. The

computer science department could simply step up the

ambitiousness of projects until the results became so erratic

that the corporations could not follow. It would have appeared

1. BAB OH 21, John Herriot, p. 9; Crevier, pp. 64-65.

34

that costs could be kept within bounds by insisting that ideas

be talked to death before actually being tried out.

A series of "manifesti" were issued, the first being Louis

Fein’s 1957 report for Stanford. There was a steady flow of

similar works over the next ten years, mostly published in the

Communications of the ACM.1

The details of these reports did not differ very importantly.

The gist was that computer science claimed to be a science of

information. But of course, essentially everything except energy

is information. Thus, Computer Science was claiming authority

over the thought processes of researchers in all other fields,

setting itself up as a kind of "glass bead game," along the

lines satirized by Hermann Hesse in Magister Ludi. Such a game

implied turning all the humanities into Big Science.

John Holland at Michigan actually seems to have been aware of

the Glass Bead Game analogy,2 and to have consciously taken it

as an ideal. Holland apparently did not take any notice of

Hesse’s satirical intent, or his ominous warning that knowledge

could not be lifted from its context. Hesse’s character of

"Fritz Tegularius," the superlatively skilled glass bead game

player with a deeply flawed character, is generally taken to be

Friedrich Nietzsche. Hesse lays great emphasis on the idea that

the delocalized intellect is not just erroneous, but morally

untrustworthy. The singular thing about Holland’s adoption of

1. Gupta, 2004, above, p. 2. Gupta provides an extensive
compendium of the manifesti.

2. Waldrop, Complexity, 1992, p. 163.

35

Magister Ludi was that he did not engage this point. Theodore

Ziolkowski, in his introduction to the Winston translation of

Magister Ludi, refers to the "... humorless readers who

complained to Hesse that they had invented the Game before he put

it into his novel-- Hesse actually received letters asserting

this!"1 Most probably, Holland did not take the glass bead game

very seriously. His actual feelings about big science can be

gathered from the fact that in 1977, he spent $3000 for his own

computer, on the grounds that this gave him better computer

access than trying to use the university’s machines.2 This could

only be true if he had completely refused to play the

grantsmanship game, even at the departmental level. At a very

rough estimate, his computer might have been a hundred times

slower than a representative minicomputer of the same date.

Holland would probably have had to let his computer run overnight

to give him the answer which a minicomputer would give in five

minutes or so.

The pretensions of computer science, or of mathematics for

that matter, did not make a very great lodgement in the social

science and humanities. There was a tendency for second-rate work

to use statistics as "padding," but the hard-edged marxist moment

had been back in the 1930’s. By the 1960’s, there was little

backing for the kind of mechanical schemata which lent themselves

to programming. This was not important, however, because the real

1. Hesse, Magister Ludi, p. ix.

2. Waldrop, above, p. 190.

36

question was the relationship of academic computer programming to

industry.

In the aftermath of Noam Chomsky’s Syntactic Structures, there

had been a number of experiments with natural language

processing, notable a group of dissertations supervised by Marvin

Minsky between 1963 and 1966, which were afterwards published as

Semantic Information Processing. This work looked more impressive

at the time than it does in hindsight. The experimenters could

plead obvious machine limitations. The programs could not

necessarily handle any input of the type they were supposed to,

but only those inputs which the experimenter had done some

tinkering with.1

Another antecedent was Newell, Simon, and Shaw’s Logic

Theorist, mentioned above. Many pure mathematicians tended to

discount the importance of Logic Theorist, placing less stress on

the actual proving of theorems, and more on the decision of what

to attempt to prove.

The sum and total of all of these was ideally to make computer

science indigestible by industry. A graduate student who went

into industry, it was hoped, would have to leave the esoteric

knowledge behind. This solution had the inherent problem that the

esoteric knowledge was not very practical.

The hopes of artificial intelligence did not, in practice,

materialize. It did not become the kind of energetic

philosophical debating society that proponents such as Forsythe

1. Crevier, p. 78.

37

had hoped for. What actually happened was that artificial

intelligence became a near monopoly of a handful of schools and

laboratories, which were willing to make more or less unlimited

concessions in order to develop artificial intelligence programs.

Experimental work in artificial intelligence (as distinct from

theoretical work) required virtually unlimited computational

horsepower. Leaving aside the discouraging estimates of critics

such as Stanley Jaki, even seemingly modest and reasonable

undertakings presented serious hardware difficulties. A typical

book occupies about a megabyte. With the core memory used circa

1964-68, a megabyte worked out to someone having to thread a wire

through a metal "eye" nearly thirty million times, something

approximating a lifetime’s work. Contemporary handbooks refer to

memory by the byte, that is 1024, 2048, 4096, or even 8192 bytes.

Given these economics, using computer storage in lieu of paper

was unthinkable. Under these conditions, the most obviously

reasonable measures, such as using a standard vade meccum or

reference work (such as a pocket dictionary) in its entirety,

were extravagantly costly. Other components were proportionately

expensive.1

Such experimental work in artificial intelligence got

"channelized" into a handful of laboratories on a handful of

campuses which were prepared to go to extravagant lengths to get

the requisite large sums of money. Other schools could not even

make it into the starting gate, as far as artificial intelligence

1. See Crevier, p. 310, for comparison with the 1980’s.

38

was concerned. Artificial intelligence research probably did not

have any more strings than any other kind of expensive research,

such as atom smashers (see Nual Pharr Davies, Lawrence and

Oppenheimer). However, someone who did not enjoy working for a

defense contractor probably would not enjoy working in a

well-funded artificial intelligence laboratory either.

It was hardly surprising that generous military funding would

come with some strings attached. Paul Edwards has argued that

artificial intelligence was directed toward the symbolic goals of

militarism, as an expensive piece of political theater.

Artificial Intelligence was to project an aura of machinelike

infallibility, papering over the real risks of war. This, by

itself, did not have to be crippling-- as indicated by computer

science’s later engagement with the even more theatrical video

game industry-- but it raised the "defense contractor" question

in a different form: why not go to work for Universal Studios and

make a lot of money?1

Equally to the point, military artificial intelligence

projects were conspicuously lacking in "engineering

practicality." For example, vast sums were spent on voice

recognition when the larger problem was usually best solved by

inexpensive feedback automation. For example, it is a supremely

challenging problem to get a machine to understand that an

airplane pilot has just said "fifteen degrees flaps," and meant

it as a command. It is much simpler to intercouple the flaps

1. Edwards, pp 142-43, 264-66, 299-301.

39

control to the airspeed indicator, etc., giving an effect similar

to an automatic transmission in an automobile. The problem with

this is that it tends to destroy the illusion that the pilot is

flying the airplane. Most of the necessary human inputs to

complex control systems ultimately boil down to either pushing a

button, giving the machine permission to carry on, or not pushing

the button.

To be successful in the sense of retaining funding, an

artificial intelligence researcher had to do a good deal of

undignified scrambling, making unkeepable promises, playing to

the vanity of officials involved in funding. By the standards of

physics in its 1930’s and 1940’s heyday, none of this was

especially blatant. By the 1960’s, the choice of funding sources

was broader, and researchers had room to make choices. However,

the basic proposition remained: if one is doing research which

requires immensely expensive equipment, one must needs be a

financier. Given that the results of research are by definition

unpredictable, it is further necessary in this instance to be a

disreputable financier. For an academic whose basic problem was

to distance himself from business, the realities of fund-raising

were a "show-stopper."1

Artificial intelligence was confined to a handful of schools,

partly on account of its cost, and partly on account of the

strains it placed on researchers grounds for being in academia in

the first place. Basic disputes often express themselves in

1. For a discussion of puffery in artificial intelligence, see
Crevier, pp. 6-7, 83.

40

seeming trivialities. At Stanford, which was divided between

people who were comfortable with big science and people who were

not comfortable with bit science, the conflict erupted in a

dispute over a picnic. Pamela McCorduck, who had been Edward

Feigenbaum’s secretary, remembered while interviewing Alexandra

Forsythe:

In fact, I remember just after Ed Feigenbaum became the
computer center director, I think he may have been
acting director then, it was decided that there would
be a picnic and it would be for the computer center,
but not for the computer science or visa-versa, I don’t
remember. And I remember George [Forsythe] coming in
to see me, because I was Feigenbaum’s secretary then,
and saying that his was very embarrassing. "How can we
invite one side and not the other." And, wherever this
was going to be held could only accommodate the one
group and I said, "Well, I don’t know, but that’s the
way it has been arranged" and he said, "Well, which one
are you coming as?"1

Alexandra Forsythe replied that: "He was very much against

discrimination or shutting anybody out of anything. He always

wanted to include anybody and that was a very good trait."2 It

was on this sort of grounds that Artificial Intelligence became

morally impossible for a large strata of computer scientists to

pursue.

Schools which did not choose to go the necessary length to

get huge sums of DARPA funding for artificial intelligence found

themselves things to do which did not cost very much money. There

was theoretical work, of course. However, the dominant tendency

1. BAB OH 17, Alexandra Forsythe, p. 18.

2. Ibid.

41

was to solve fairly practical problems involving software tools,

for use with the type of computer which was readily available and

not too expensive. These "Prairie Schools" (as distinct from

DARPA schools), mostly Midwestern land grant universities,

first started working on accessories for the computer itself,

typically general-purpose software such as programming languages.

When that got too similar to what the corporations were doing,

they branched out into applications in nonquantitative fields.

However, finally, they found their way to a political populist

approach in keeping with the schools’ ancestral traditions.

Probably the most common area of work was basic research

applying to the major hardware and software used in computing.

Basic research was supposed to be sufficiently impractical that

corporations would not do it. However, things did not work quite

that way in computing.

At Michigan, Bernard Galler’s Ph.D. students did things like:

...a very ingenious linear programming technique... a
thesis on disk cacheing and so on... a nice study of
imaging techniques for medical images and scanner
images... a nice thesis on dynamic updating of computer
modules... the analysis of musical sound... an
interesting topic involved with name directory service
and organization of database systems connected with the
X.500 standard... Intelligent Vehicle Highway Systems.1

These were nearly all things which could equally well have been

done at IBM or AT&T. Many of these students went on to places

1. BAB OH 236, Bernard A. Galler, pp. 10-12.

42

like Texas Instruments, Apollo Computer, and Bellcore (AT&T).1

This kind of work tended to collapse the distinction between

academic computer scientists and industry. There were

universities which vended commercial products.

Jim Gray was one of the first computer science graduate

students at the University of California at Berkeley. He first

enrolled as a freshman in 1961, co-oping his way through college,

and at one point, simply going and working in industry for six

months. On his return, he got interested in computing. He not

only took the authorized courses, but talked his way into

graduate-level electrical engineering courses. The Mathematics

department found him as well, and gave him research

assistantships as an undergraduate. By the end of his senior

year, he had exceeded the requirements for a bachelors’ degree,

and was a fair way along towards a masters. At this point, he

went off to Bell Labs. Bell labs sent him to the Courant

Institute at New York University, two days a week. After a year,

Gray had accumulated enough savings to drop out and travel for a

bit-- this being the age of Easy Rider, after all. Travel did not

turn out to be as much fun as Gray thought it would be. So he

went back to Berkeley as a graduate student under his old

undergraduate advisor, Mike Harrison, who had moved from the

Mathematics department to the new Computer Science department.

Gray became interested in the theoretical aspects of programming

languages and compilers, and wrote his dissertation on one aspect

1. Ibid.

43

of the subject. This sort of work was theoretical, but it was

also extremely practical. The ultimate implication was the

possibility of a "universal compiler," which could load a grammar

for a language, and a program written in that language, and run

them. IBM had every reason to be interested in someone doing this

kind of work. Gray had also gotten interested in Jay Forrester’s

Limits To Growth, and it turned out that IBM Research was being

expected to respond constructively to Forrester. IBM gave Gray

a two-year post-doctoral fellowship at Berkeley, and then hired

him at their Yorktown Heights research center. Gray found

eastern winters depressing, and the only way IBM could hang on to

him was to give him a job at its San Jose center, back in

California, where he started working on research into relational

databases.1

Computer science was facing, relatively early, a problem which

would ultimately confront all of the hard sciences. If one can

formulate a theory, however abstract, in explicit terms, then a

computer can mechanically crunch out particular derivations and

special cases of the theory, and apply then to particular

problems. If the theory cannot be formulated in explicit terms,

then it is not possible to determine whether a piece of evidence

contradicts the theory-- in other words, the theory is not

falsifiable, and is therefore not a theory, just a theological

dogma. One implication of this phenomena was that there was no

clear distinction between successful pure research on the one

1. BAB OH 353, Jim Gray, pp. 5, 8. 10-20, 23-33.

44

hand, and technology on the other hand. A pure science faculty

cannot, on the basis of subject matter, avoid the kind of

"revolving door" employment pattern characteristic of an

engineering school, with people constantly going back and forth

to and from industry. Pure research did not create social

separation from industry.

Another possible mode of escape was to work on creating

applied tools for previously unrepresented fields, such as art.

However, the role of academic computer scientists was outweighed

by that of corporate researchers. Success in such work put its

creator rather in the position of a successful typewriter

inventor, and encouraged him to go into the business of

manufacturing his invention.

Charles A. Csuri came back to Ohio State University from the

Second World War, got his bachelors degree in art, and his MFA,

in short order, and joined the faculty. By the time he got

interested in computers, he was long since tenured. In 1955, he

first began to learn about computers through a personal

friendship:

At the University, a personal friend, Jack Mitten, who
was a professor of engineering, began explaining to me
computers and their applications for science and
engineering. I asked all of those initial questions,
like, ’What is a computer?’ and ’How does it work?’. He
patiently explained to me basic ideas and we began a
dialogue about computers and art which continued over a
period of eight years. At first he would describe the
problems of converting by computer programming the
Russian language into the English language, and that
was a radical idea in 1955 - it may still be a radical
idea. Please keep in mind that in 1955 there were no
plotters or graphics output devices, but I was able to
speculate about computerized theories of art and
notions about artificial intelligence. The ideas were

45

interesting, but the practical reality of programming
prevented me from taking any serious action. We were
close personal and social friends and our families
frequently ate dinner together. During the cocktail
hour, we would talk about computers, and as the
martinis began to flow more freely, so did our ideas
about computers and art.1

When, in 1965, Csuri heard of people producing "typewriter

graphics" images with a computer, he took that as a signal that

the time was ripe to get actively involved in computers. He took

a short programming course, and started working away. When he

needed money for programmers and special equipment, he went to

the National Science Foundation. By small increments, Csuri moved

away from actual art into research in computer graphics. This

research turned out to be toolmaking. Like most of the early

computer workers, Csuri’s first task was to make his own tools

for his own use, and that turned out to take on a life of its

own. Thus his research into the possibility of doing art by

computer had applied dimensions, such as special effects for

television and movie studios. Csuri wound up with, for a time,

his own company on the side.2

Csuri’s work represented the outer limits of what the

National Science Foundation could fund. Frederick Weingarten at

NSF justified the funding on the grounds that he "wanted to see

what somebody coming in from the outside making different kind of

demands on the graphical capabilities of computers would do."--3

1. BAB OH 180, Charles A. Csuri, p. 4.

2. BAB OH 180, Charles A. Csuri, pp 5, 14, 15-31.

3. BAB OH 212, Frederick Weingarten, p. 12.

46

in other words, as a lever to enforce the rapid development of

computer graphics. Despite a precautionary warning to Csuri to

keep quiet about the business, the matter got brought up in

congressional appropriations hearings.1

However, art was not only for academics. At about the same

time as Csuri, a group of people at Bell Labs were also doing

computer art: Kenneth C. Knowlton, Leon D. Harmon, Lillian

Schwartz, A. Michael Noll, M.R. Schroeder, and Bela Julesz. As

Jasia Reichardt, compiler of a contemporary anthology of computer

art, observed:

If one were to look for any one centre [sic] which has
produced more, and a greater variety of
computer-generated images than any other, one would
probably have to turn one’s steps to New Jersey and the
Bell Telephone Laboratories.2

IBM also had its computer artists, working at the IBM Scientific

Data Center in Tokyo. Among other projects, they rigged up an

array of photocells, plugged into an art-producing computer, and

then they got in a couple of ballet dancers to perform in front

of the photocells for the benefit of the computer. This won them

points for panache.3

The artists who were willing to work with computers at an

early stage tended to have a strong preoccupation with artistic

1. Weingarten, above, p. 12; Csuri, above, p. 20.

2. Reichardt, The Computer in Art, 1971, p. 20.

3. Reichardt, above, pp. 20-33 (for Bell Labs), 81-87 (for
IBM).

47

technique, and their goal was to produce universal tools for

applying technique-- Csuri, when interviewed in 1989, was making

a case for a program more or less like Photoshop. (Csuri, above,

pp. 8,24) The samples of computer art in Reichardt’s book are

remarkably devoid of human content. They remind one of the

exercises in which budding artists are made to draw circles over

and over again, in order to gain fine motor control. A BFA final

show will be full of paintings of arrangements of circles and

squares, etc., and this is very much the flavor of early computer

art. However, the same mental tendency which ordinarily produced

abstract paintings in this case produced software tools, which

could be used for all kinds of artistic work, including

commercial art.

The corporations could do about as good a job of sponsoring

computer art as the universities and the National Science

Foundation. The practitioners were so technically minded that

they did not find any interest in the uniquely distinctive

qualities of the university. The very fact that a good tool is

universal means that it does not embody any particular values,

any more than a typewriter does-- or even a word processor. The

values of things like academic freedom were not immediately

essential to producing tools. It was the same basic pattern as

compilers and operating systems. If the things worked at all,

they put the researcher in the position of doing things which

could equally well have been done for a corporation.

It was seemingly impossible to find anything useful to do in

academia which a corporation could not do just as well. Another,

48

and better, solution was to revive engineering radicalism. The

idea was to critique corporations, as it were, on their economics

instead of their subject matter. The computer science department

could do things which were exceedingly practical, but which flew

in the face of the economic logic corporations lived by.

Ralph Griswold, who we last saw leaving Stanford to go to Bell

Labs, invented the SNOBOL programming language there. In the

course of distributing and promoting it, he got into a

disagreement with corporate policy. Griswold was acting as if

Bell Labs was a national laboratory such as Argonne National

Laboratory or Los Alamos, which should operate for the public

good. In the case of SNOBOL, this meant placing the software,

manuals, etc. in the public domain, so that everyone could use

them, and they could become a standard. However corporate

management took the view that Bell Labs was a profitmaking

corporation, and that software should be sold for a profit. This

was of course a shortsighted view for a firm whose finances

ultimately depended on public utility franchises, which is to

say, on political goodwill, but that was the view of management.

In 1971, Griswold left to go to the University of Arizona.

At Arizona, Griswold continued a program of language

development and research, setting out to produce his second

language, ICON. Griswold obtained National Science Foundation

funding, on a modest scale (he estimated $100,000 annually from

1971 to 1990), which was used to pay stipends for graduate

students, salaries for laboratory staff, and summer salary for

49

himself.1 In other words, he did not ask for enough money to

buy the greatest new giant computer, in contrast to the

DARPA-oriented labs.

Griswold, in effect, replicated a slice of Bell Labs-- as it

ought to have been-- with academic requirements loosely cobbled

over the actual organization. As he remarked about dissertation

topics:

Dissertation topics don’t come out to be what I thought
they might be. And I typically don’t assign a topic and
say, "Go do this." Nor do I typically expect a student
to develop a topic in advance of doing any research and
then carry it out. I expect that to develop as a
process of learning how to do research and conducting
it... If you are committed to doing a big project you
just plain have to get it done, and the people that you
hire have to be willing to do it and they have to make
dissertations out of it somehow - one way or another,
which is quite different from truly inspirational
things.2

The general spirit of this is to make the dissertation into

something very like a patent application-- the traditional and

authoritative form of engineering writing.

Much the same principle applied to coursework. The students

who would eventually come to work with Griswold on ICON tended to

get jobs at the campus computer center in the first instance,

and then begin taking computer science courses at a leisurely

pace. By definition, a promising student was one for whom this

level of coursework was essentially recreational. Their real

1. BAB OH 201, Ralph Griswold, p. 8, 22.

2. Ibid, pp. 22-23.

50

challenges would have come in the course of their jobs, and

would have involved delving into the internal workings of really

large programs written by large numbers of people. Griswold

might have had three or four such students at any one time,1

and his grant money would have sufficed to maintain them at a

level of reasonable comfort, so that they did not worry very

much about finishing up quickly.

This attitude is illustrated by two of Griswold’s students.

Stephen Wampler started in the masters program in 1972, switched

to the Ph.D program in 1976, completed his Ph.D. in December

1981, and started teaching at Northern Arizona University in

January 1982. He had decided that he wanted to teach

undergraduates, something he could not conveniently do at the

University of Arizona.2 Presumably, to do that, he needed to get

his papers in order. Gregg M. Townsend had gotten a bachelors

degree in systems engineering in 1974, and had spent three years

working in industry, before coming back to the University of

Arizona as a systems programmer at the computer center. He

finished up his masters degree in 1984, and shortly afterwards

got a job as a Research Programmer in the computer science

department, working partly on ICON, and partly on other things.

At the time of the interview (1990), Townsend was clear that he

did not want to get a Ph.D. He did not want to teach, and he did

not particularly care for research per se. What he liked was

1. 10-12 Ph.D.’s and 20-30 Masters’ over eighteen years, ibid, p.
24.

2. BAB OH 202, Stephen Wampler, pp. 3, 7, 11.

51

programming, and that was what he did.1

Griswold was able to craft a unique identity as a publicly

paid developer of public domain software for public use. He

recruited students very much like himself, who tended to carry on

and expand his program. However, a long-term implication was that

it reinforced a tendency for Computer Science to define itself in

terms of producing compilers, operating systems, etc.

A large section of Computer Science was driven by the need to

give students a good reason not to go off to industry. This meant

avoiding policies which led to becoming similar to industry, and

at the same time, finding things which industry could not do.

After a certain amount of experimentation, the best solution

which emerged was to be ethically part of the university, that

is, to exemplify the university’s values in the new area of

computers and software, and to stand in contrast to corporate

values. The new computer scientists were in effect betting that

sooner or later, AT&T and IBM would revert to type, that is, to

the primal capitalism of someone like Jay Gould, or that they

would be replaced by someone rather like Jay Gould.

// insert a concluding section

1. BAB OH 204, Gregg M. Townsend, pp. 3-4, 7, 10.

52

An Interview with DALE LAFRENZ, OH 315, Conducted by Judy E.
O’Neill on 13 April 1995, Minneapolis MN

An Interview with RALPH and MADGE GRISWOLD, OH 256, Conducted by
Judy E. O’Neill on 29 September 1993, Minneapolis, MN

An Interview with RALPH and MADGE GRISWOLD, OH 201, Conducted by
David S. Cargo on 25 July 1990, Flagstaff, AZ

An Interview with STEPHEN WAMPLER, OH 202, Conducted by David S.
Cargo on 25 July 1990, Flagstaff, AZ

An Interview with GREGG M. TOWNSEND, OH 204, Conducted by David
S. Cargo on 26 July 1990, Flagstaff, AZ

An Interview with BRUCE G. BUCHANAN, OH 230, Conducted by Arthur
L. Norberg on 11-12 June 1991, Pittsburgh, PA

An Interview with THOMAS A. KEENAN, OH 217, Conducted by William
Aspray on 28 September 1990, Washington, D.C.

An Interview with JOSEPH F. TRAUB, OH 70, Conducted by William
Aspray on 5 April 1984, Columbia University (New York, NY)

An Interview with GRANGER MORGAN, OH 224, Conducted by Andrew
Goldstein on, 27 November 1990, Pittsburgh, PA

An Interview with GENE GOLUB, OH 105, Conducted by Pamela
McCorduck on 8 June 1979, San Francisco, CA

An Interview with STEPHEN COOK, OH # 350, Conducted by Philip
Frana on 18 October 2002, Toronto, Ontario, Canada

An Interview with TERRY ALLEN WINOGRAD, OH 237, Conducted by
Arthur L. Norberg on 11 December 1991, Stanford, CA

An Interview with BERNARD A. GALLER, OH 236, Conducted by Enid H.
Galler on 8, 10-11, and 16 August 1991, Sutton’s Bay, MI, Ann
Arbor, MI

An Interview with WILLIAM F. MILLER, OH 29, Conducted by Pamela
McCorduck on 22 May 1979, Stanford, CA

An Interview with JIM GRAY, OH 353, Conducted by Philip L. Frana
on 3 January 2002, San Francisco, California

An Interview with CHARLES A. CSURI, OH 180, Conducted by Kerry
J. Freedman on 23 October 1989, Columbus, OH

An Interview with FREDERICK WEINGARTEN, OH 212, Conducted by
William Aspray on 26 September 1990, Washington, D.C.

James D. Koerner, The Miseducation of American Teachers, Penguin
Books, Baltimore, 1965, orig. pub. 1963

53

Lewis B. Mayhew, "The Future Undergraduate Curriculum," pp.
200-219, in Alvin C. Eurich (The Academy For Educational
Development), Campus 1980: The Shape of the Future in American
Higher Education, 1968, Dell Publishing, New York.

Jasia Reichardt, The Computer in Art, 1971, Studio Vista,
London/Van Nostrand, New York

G. K. Gupta, Computer Science Curriculum Developments in the USA
in the 1960’s, SCHOOL OF COMPUTER SCIENCE AND SOFTWARE
ENGINEERING, MONASH UNIVERSITY (Australia), TECHNICAL REPORT
2004/164, dated 20/12/2004,

http://www.csse.monash.edu.au/
publications/2004/tr-2004-164-abs.html,
http://www.csse.monash.edu.au/
publications/2004/tr-2004-164-full.pdf

downloaded May 9, 2005

Brian Jackson and Dennis Marsden, Education and the Working
Class: Some General Themes Raised by a Study of 88 Working-Class
Children in a Northern Industrial City, Penguin Books, Ltd.,
Harmondsworth, Middlesex, England, 1966, orig pub 1962.

Deals with working class enrollment in an academic secondary
school (grammar school) in Huddersfield, Yorkshire. Making a
somewhat large translation, this would be the analogue of an
American state university in terms of social issues.

Hermann Hesse, Magister Ludi (The Glass Bead Game), translated
from the German Das Glasperlenspiel by Richard and Clara
Winston, with a forward by Theodore Ziolkolski, Bantam Books,
New York, 1970, translation orig. pub. 1969, novel orig. pub.
1943.

To get a full sense of Hesse’s ideas about the relationship
between the intellect and the social world, read also Narcissus
and Goldmunde and Beneath the Wheel.

M. Mitchel Waldrop, Complexity: The Emerging Science At the Edge
of Order and Chaos, Touchstone (Simon and Schuster), New York,
1993, orig pub 1992.

Forsythe, Stein, Burks, Herriot interviews, Crevier fr. Ch 1

Edwards fr. ch5

Additional sources not yet used:

Alison Adam, "Construction of Gender in the History of
Artificial Intelligence," IEEE Annals of the History of
Computing, Fall 1996

contains references to various sources for early projects, eg.
General Problem Solving System, mostly in the form of

54

journalistic histories.

The article in the Encyclopedia of Computer Science by N. V.
Findler on "Artificial Intelligence" lists assorted items:

Journals:
International Journal of Man-Machine Studies;

LC, from 1969,
Information Sciences;

LC from 1968
International Journal of Computer and Information Sciences;

LC from 1972
Artificial Intelligence;

LC from 1970
Behavioral Science;

LC from 1956
ACM Communications and Journal;
Computer Journal;
Kybernetic; Cybernetica;
IEEE transactions on Computers;
System Science and Cybernetics;
Information and Control; etc.

Books: B. Meltzer and D. Michie, Machine intelligence, 1967-72
(annual workshop proceedings); M. Minsky, Semantic Information
Processing, 1968; etc.

Survey Papers, ie. contemporary bibliographies: M. Minsky, "Steps
Towards Artificial Intelligence," 1961, Proc. IRE
--
Other related topics in the Encyclopedia of Computer Science:

The articles in the Encyclopedia of Computer Science on "Arts
Applications" and "Humanities Applications" (both by S. A.
Sedelow [Sally Yeats Sedelow, U. Kansas]) are another source,
since much of this covers the computer as artist. One interesting
item is a 1957 article about musical composition by Frederick
Brooks, destined to be the "father of the IBM System/360."

Donald G. Fink, Computers and the Human Mind: An Introduction to
Artificial Intelligence, 1966 Anchor Books (Doubleday & Company),
Science Study Series, Garden City, NY.

The first eight chapters are a necessary introduction to
computers, but chapters 9-12 deal with early "hard style"
artificial intelligence, eg. Arthur Samuels’ checkers player,
Newell, Shaw, and Simon, language translation, Hiller’s music
composition program. This book is significant if nothing else for
the sheer number of students who read and were influenced by it.
At a time when computers themselves were hard to come by, it was
the most accessible material above the level of someone like D.
S. Halacy.

Anthony Oettinger’s graduate syllabus, and I think, some others,
with extensive reading lists in philosophy, psychology, etc.

55

1. Susumo Kuno and Anthony Oettinger, "Computational
Linguistics in a Ph.D. Computer Science Program," CACM,
December 1968, pp. 831-36.
2. Robert McNaughton, "Automata, Formal Languages,
Abstract Switching, and Computability in an Ph. D.
Computer Science Program," CACM, November, 1968, pp.
738-40, 46;
3. Bruce Arden, "The Role of Programming in a Ph.D.
Computer Science Program," CACM, January, 1969, pp. 31-37;
4. G. Salton, "Information Science in a Ph. D. Computer
Science Program," CACM, February, 1969, pp. 111-17
5. George E. Forsythe, "A University’s Educational Program in
Computer Science," CACM, January, 1967, pp. 3-11

56

