
II

Programming as an Exceptional Science

of Artifice and Complexity

The plenitude of computer power was used to invent computer

programming as a science of artifice and complexity. That is, on

the one hand, programming was unhampered by external realities.

On the other hand, computer programming was expressly constructed

in such a way as to control complexity.

The most important means for the conquest of complexity is the

act of partitioning a complex system into a number of simpler

subsystems, with well defined interfaces, to be dealt with

independently. In natural science, this contains an element of

distortion, but in the artificial science of computer

programming, a proposition is true if it is declared to be true.

So a subsystem is independent if it is declared to be so. Thus,

in computer programming, there is no limit to the construction of

independent subsystems, commonly called subroutines.1

1. Herbert A. Simon, in the The Sciences of the Artificial (2nd
ed; The MIT Press, The Massachusetts Institute of Technology;
Cambridge, Mass., 1969,1981), provides a general development of
the idea of complexity, and of the place of artificial
intelligence and computer science as sciences oriented around the
conquest of complexity. As Simon points out these sciences are
perfectly artificial ones; hence they allow perfect contingency
and possibility of choice, unconstrained by physical reality.

Gerald Weinberg, in The Psychology of Computer Programming
(Van Nostrand Reinhold Company, 1971), treats the problem of
complexity, especially in the form of the linguistic issues of
programming language design, as the only meaningful aspect of the
psychology of programming.

Page 2-1 draft of September 30, 1996

The mastery of complexity, and the freedom of choice which

followed from that, had the result that programming would be an

outward-looking technology rather than an inward-looking one.

Unresolved complexity was not required for computer programming’s

internal functioning, in striking contrast to the situation in

engineering. So it was possible for computer programming to

embrace additional complexity, reaching out to accept human

institutions in all their irrationality.

Most immediately, the choice which grew out of programming’s

artificiality was exercised in such a way as to minimize

constraints on the programmer. As impediments to programming

emerged, they were systematically eliminated by developing better

intermediate software. There were two aspects to this elimination

of impediments. One was a collection of practical matters; the

other was the controlling and reduction of complexity.

The practical matters were not individually very important,

but there were a number of them. Programming is remarkably free

of all kinds of physical and practical constraints which restrict

the role of women. After all, it is little more than the use of

language, a form of writing. Programming does not require

physical strength or agility, even in an ancillary capacity. As

Elizabeth Baker1 has pointed out, even ancillary and indirect

requirements for strength can greatly reduce a woman’s

employability. Likewise programming is not filthy work, nor is it

even in any sort of contact with filthy work. Nor does it have

1.Elizabeth Faulkner Baker, Technology and Women’s Work,
Columbia University Press, New York, 1964, pp. 44, 80-82

Page 2-2 draft of September 30, 1996

any connection with hazardous work. There has been very little

restriction of time, place, and schedule, on the whole.1 Before

the development of computer terminals, which can be used from

anywhere there is a telephone line, programming was essentially a

paper process, involving a modest quantity of papers at any given

time. Programmers read print-offs and manuals, and wrote on

coding forms. All of these could be taken home in a briefcase.

Programming is compatible with a conventionally feminine

lifestyle-- or in fact, almost any other desired lifestyle.

These are all significant factors, of course, but as Baker

points out, the single greatest restriction on women is their

role as wife and mother. Because they might be obliged to leave

work in order to meet family obligations, women have tended to

receive less training, both as a result of their own decisions

whether or not to invest in schooling or low-paid

apprenticeships, and also as a result of the decisions other

people make about whether to admit women to the more immediately

remunerative training programs.2 Complexity becomes a barrier to

access, because most women do not have time to learn the

complexity.

1. A special case would be "hacking," that is, programming as an
artist or virtuoso. Hacking often involved staying up all night
in order to gain access to a computer at a time when nobody else
wanted it. This, however, was only a problem for those who were
a) doing unremunerative work (and could therefore not demand an
allocation of computer time via normal channels) and b) using the
computer in a significantly more interactive fashion than was
customary at the time. Even in this case, it might well be more
advantageous to work at home, in order to minimize the strain of
late hours.

2. Baker, op. cit., pp. 438-440

Page 2-3 draft of September 30, 1996

Here, too, programming’s symbolic nature comes to the fore. As

a constructed symbol system, programming has almost from the

beginning been exceedingly well internally partitioned. In no

other technical field does so little training yield so great a

harvest of effective skilled ability. A programmer with a little

training can draw on a vast store of ’canned’ skill embodied in

the operating system, compiler, subroutine libraries, etc.

Computer software, especially in what ultimately became known as

the ’object-oriented’ mode, is the perfect embodiment of Isaac

Newton’s famous remark to the effect that ’if he saw further, it

was because he stood on the shoulders of giants.’ However, the

giants of computer programming have not only offered their

shoulders to stand on, but have also provided ladders to enable

one to clamber up more easily.

A programmer needs far less knowledge to create a mundane

program-- let us say, a bookkeeping program-- than an engineer

needs to create an equally mundane manufactured object. In order

to make a bookkeeping program, it may well be necessary to sort

records. It is not a simple matter to sort in an efficient way,

that is, in a way which does not become prohibitively expensive

as the number of records increases. There is an elegant and

devious solution, known as the ’divide-and-conquer’ algorithm. It

is typically packaged up as a subroutine, which one can use

without understanding it. The most advanced programming languages

and operating systems have tended to increase the range and

variety of expertise which can be thus packaged up for use by the

Page 2-4 draft of September 30, 1996

unskilled.1

Another argument, related but more debatable, grows out of

Sally Hacker’s claim2 that the role of calculus in engineering

school is to function as a gatekeepers, excluding women who will

not think "male." Regardless of the claim’s merits, which would

cause many woman mathematicians to make rude remarks, calculus is

precisely the sort of body of intercessory knowledge which, in

computer software, gets submerged or substituted for. That is,

calculus can be approximately described as a body of recurring

mathematical problems, and the knowledge of how to solve these

problems can be embodied in computer programs, or subroutines.

Invoking these programs takes far less mathematical knowledge

1. Broadly speaking, better programming languages permit one to
program in a language more natural to one; and one which contains
added vocabulary appropriate to the task at hand. Better
operating systems allow one to do so without worrying about
undesirable interactions with other persons, programs, or data.
Where interaction is necessary, the operating system manages the
details of it. Of course, to further complicate the picture, some
programming languages (e.g. LISP, SIMSCRIPT, PROLOG) have their
own internal operating systems, for the purpose of managing
interactions according to special rules peculiar to those
languages.

2. Sally Hacker, Pleasure, Power, and Technology: Some Tales
of Gender, Engineering, and the Cooperative Workplace, Unwin
Hyman, Boston, 1989

Hacker reports: "I finished one calculus exam and followed a
young woman out the door. She threw up in the bushes... One young
man... loved mathematics as he did life itself. But he could not
pass calculus tests under pressure of time. He dropped out...
[A Statics professor remarked] ’If we gave the students more
time, anyone could do it. The secretaries could even pass it.’"
(p. 41-42)

Hacker stresses that this is an ancestral tradition in
engineering school: "Mathematics teaching and testing continued
to perform the weeding function suggested in earlier debates...
accounting for 72 percent of mid [nineteenth] century West Point
failures" (p. 66)

Page 2-5 draft of September 30, 1996

than doing calculus unaided.

Programming imposed few constraints on the programmer.

Programmers could work at a time and place, and in a manner, best

suited to their needs, and they did not need to be

encyclopedically trained. In all these respects, programming was

quite opposite to engineering.

By contrast with programming, engineering is comparatively

unpartitioned. Because the objects designed by a traditional

engineer cannot dance on pinheads, there does not exist the

luxury of partitioning them. The famous Rube Goldberg cartoons

are a good example of what a well partitioned machine would look

like. It would also be grossly inefficient, unreliable, etc. Each

component contains energy; has weight; occupies space, which

another object cannot simultaneously occupy. Each component is

subject to friction, structural fatigue, and other deterioration

(rust, corrosion, rot, or even worms, according to what material

the component is made of). And so on, in a catalog of the ills

physical substance is prone to. In short, each component costs.

The comedy of a Rube Goldberg machine lies precisely in the

extravagant disproportion between costs and results. It was

precisely this inefficiency and unreliability which Charles

Babbage encountered when trying to build a mechanical computer.

Typically, a single component of a device built by an engineer

must serve several unrelated functions, in the name of

efficiency. This variety of function is not universality; it is

not a case of doing several things by being able to do anything,

as a computer does; the multi-functionality of the typical

Page 2-6 draft of September 30, 1996

mechanical component is a more impoverished quality. The

component is designed to be fitted for several specific

functions, often having to trade-off quality in one aspect for

quality in another. For example, an airplane’s wing is

simultaneously: an airfoil; a loadbearing structure, not unlike a

bridge; a fuel tank; and an equipment locker to hold landing

gear, flaps, etc. Or rather, the wing is an uneasy compromise

between all of these. There is not the luxury of thinking only

about structural strength, or only about aerodynamics. The same

principle applies for every built object down to a transistor

radio.

To create a quite mundane and conventional artifact, with no

real novelty to speak of, one may require knowledge of many

collateral sciences. Even those branches of engineering, such as

electrical engineering, which are intellectually closer to

computer programming 1 are still embedded in engineering.

Electrical engineering students are required to meet the general

requirements of the engineering school, in which the department

of electrical engineering is embedded. That is, under the rubric

of ’engineering fundamentals,’ they must cover the equivalent of

an undergraduate major in physics, with great chunks of effort

put into subjects like chemistry, physical chemistry,

thermodynamics, hydraulics, etc., which are very remote from the

1. Paul Ceruzzi, in "Electronics Technology and Computer
Science, 1940-1975: A Coevolution" (Annals of the History of
Computing, 1989, 10[4]:257-275), lays stress on the extension of
the idea of complexity from computer science into electrical
engineering, and the progressive reduction of electrical
engineering to a science of information processing.

Page 2-7 draft of September 30, 1996

new information science oriented conception of electrical

engineering.

The result is that the engineering curriculum is long and

difficult. Technical coursework proliferates, driving out general

education. Further, unlike much of undergraduate liberal arts

education, this coursework is conducted on pedagogically sound

principles, with frequent oral and written examination, written

assignments, minimal use of multiple choice exams, etc. These

practices are not unique to engineering: they can be found in the

better sort of teaching manual;1 These are proven methods for

getting even very young and immature students to work every day.

What distinguishes the engineering school from the large liberal

arts college is that the engineering school programmatically

applies these conventional methods to all its students, not just

the promising few. Some of the least promising students respond

by cribbing, of course, as Sally Hacker notes,2 but the

conventional methods of pedagogy were evolved over hundreds of

years to keep cribbing within tolerable bounds, and to divert it

into a form of study. There is nothing in engineering school

remotely comparable to the term paper purchased from a mail-order

catalog. That sort of outright cheating can only happen in an

instructional system primarily designed to avoid inconveniencing

1. For example, see Gilbert Highet, The Art of Teaching, 1950.,
pp. 118-24. Highet reflects the standard of instruction as
conducted in an English Public School and at Oxford and
Cambridge. As such, he goes rather beyond the undergraduate level
practice of an American engineering school.

2. Hacker, op. cit., p. 41

Page 2-8 draft of September 30, 1996

the faculty. While Computer Science courses, and indeed, nearly

all the mathematics and hard science courses1 in the liberal arts

college, are pedagogically sound, there are far fewer of them. A

Computer Science major is free to take large numbers of freshman

and sophomore-level liberal arts survey courses. And for that

matter, it is by no means necessary to be a Computer Science

major to get into computer programming. But engineering school

does not permit that sort of compromise. An ill-partitioned

discipline requires a long and difficult curriculum, which

requires a systematic teaching method demanding commitment from

the students.

So the most important casualty of the system of engineering

education is not liberal education, but the student’s free time.

By judicious use of the cult of machismo,2 the engineering school

is able to draw boys away from profitless beer-drinking, and

eventually make them into "four-year-bench-engineers." The system

is quite unsuccessful in attracting girls, however. Most girls

are not susceptible to machismo. Considerable numbers of coeds,

more than is generally admitted, have come to college to get

their "Mrs." As Louise Kapp Howe points out, most women like

housework, for the very good reason that it offers greater

1. The typical rare exception might be a course which is
stipulated in the college catalog as not counting towards a
degree in the field, and which is intended for students who did
not take the appropriate preparatory subjects in high school.
However, by no means all of such courses are pedagogically
unsound, only some of them.

2. Hacker (op. cit., p. 43) refers to "...this appeal, which
seduces largely working-class men into the Green Berets or the
paratroops in similar ways."

Page 2-9 draft of September 30, 1996

control, choice, autonomy, etc., than all but a handful of paid

employments.1 By extension, the primary goal of many coeds is the

making of a satisfactory marriage. They can be gotten to take

typing and shorthand, "just in case," but they cannot be gotten

to sign up for initiation into a professional cult.2

Another aspect of the unpartitioned nature of engineering is

that artifacts are not usually manufactured by a conventional and

standard process. Software is simply copied, automatically, onto

tapes, disks, etc. A programmer simply does not have occasion to

think about ’design for manufacturability,’ and a programmer who

1. Louise Kapp Howe, Pink-Collar Workers: Inside the World of
Women’s Work, Avon Books, 1978, orig. pub. 1977, p. 205-209,
citing Carolyn Groo Jarmon, "Relationship Between Homemakers’
Attitudes Towards Specific Household Tasks and Family
Composition, Other Situational Variables, and Time Allocation,"
Unpublished Master’s Dissertation, Cornell University, 1972

2. The same kind of logic applied to the more advanced levels of
training in Computer Science. While the percentage of women among
recipients of Bachelor’s degrees in the 1980’s was commensurate
with the percentage of women programmers, the percentage for
Master’s degrees was somewhat lower, and that for Doctorates was
much lower, even when the foreign born had been separated out.

Karen A. Frenkel, in "Women and Computing," (Communications of
the ACM, Nov. 1990 [vol. 33, num. 11], pp. 34-36) gives figures
for proportions of degrees in Computer Science granted to women
in 1980 and 1986-89 (p. 38). The figure for bachelor’s degrees
fluctuated from 30% to 35%; the figure for masters was 20.9% in
1980, and fluctuated between 27% and 30% later in the decade; the
figure for doctorates fluctuated between 9% and 18%; and that for
doctorates awarded to Americans fluctuated between 12% to 21%.
Finer distinctions over such a short time scale are probably not
significant, especially given the small number of doctoral
recipients.

However, these figured do not necessarily represent simple
attrition over additional years of study. The recipients of
graduate degrees in computer science did not always take their
undergraduate degrees in that subject. An undetermined number of
engineers (typically from "old-line" fields like mechanical,
civil, or chemical engineering) may have chosen to "retread"
themselves with masters’s degrees in Computer Science.

Page 2-10 draft of September 30, 1996

did by some accident think about it would discard it as

meaningless.

Engineers, by contrast, must think about the process whereby

their designs are turned into artifacts. Large numbers of

engineers are employed in supervising the manufacturing process.

There is, in fact, a whole branch of engineering, Industrial

Engineering, concerned with this supervision, but the

manufacturing process tends to infiltrate other fields as well,

as they deposit certain of their members in the factory with

directions to see that what is manufactured is what was designed,

and that what is designed can be manufactured.

This can be seen in the clearest way in the oldest branch of

engineering, Civil Engineering. Large numbers of civil engineers

are employed on construction sites. Others are employed in survey

work, for much of the complexity of civil engineering is the

complexity of the earth’s surface. This surveying shades over

into construction by way of such activities as test boring and

drilling. Thus civil engineering is integrally linked to the work

of construction. A civil engineer makes his way in the world not

by drawing on paper, but by going out into the field. The most

ambitious civil engineers make their way not merely into the

field, but into the most remote wildernesses of the most

Page 2-11 draft of September 30, 1996

backwards countries, where none have gone before.1

The civil engineer in the field finds himself in the center of

a group of men, such as construction workers, miners, etc., who

are employed in intrinsically strenuous and hazardous

occupations. If civil engineering is an overwhelmingly male

occupation, the surrounding occupations are still more so. In

1993, 9.4% of civil engineers were women, but that was five times

the percentage of women construction workers or women miners.2

The conditions of ’roughneck’ work define an ethos of their

own. The contractual model of society, which underpins much

feminist thinking, simply does not apply under such conditions.

Small numbers of women have penetrated construction work, but

they have not done so on a conventionally feminist basis. They

have done so by accommodating themselves to roughneck culture.3

Summing up, engineering is largely closed to women because its

internal structure and imperatives require it to demand a measure

of commitment which most women, with other life goals, are not

1. For example, see Richard L. Meehan, Getting Sued and Other
Tales of Engineering Life, The MIT Press, Cambridge, Mass, 1981,
pp. 89-148. for an account of how one young civil engineer, in
1963, quit a laboratory job testing soil samples, in order to go
to upcountry Thailand to do onsite soil testing for a dam that
was being built with American AID funds. Once there, he happily
went more or less native, and immersed himself in a world of
peasant villages, construction by elephant, and, as a spare-time
recreation, hunting in the jungle.

2. 9.4% of Civil Engineers in 1993, versus 1.9% for Construction
Trades, 1.8% for Extractive Occupations, per: Statistical
Abstract of the United States, 114th Edition, 1994, U. S.
Department of Commerce, Table 637, "Employed Civilians, By
Occupation, Sex, Race, and Hispanic Origin," pp. 407-09

3. [Link in the blue collar women book]

Page 2-12 draft of September 30, 1996

prepared to make.

If engineering was closed to all but the dedicated few,

computer programming was open. If engineering educators were

continually attempting to make prospective engineers into

eighteen-year-old graduate students, the developers of

programming tools were continually attempting to diminish the

skills required to program a computer.

Unlike engineering, computer programming did not place

extravagant demands on its practitioners’ ability to cope with

complexity, and what demands there were, grew less with time. The

practitioners’ surplus ability therefore went into coping with

the complexity of the world outside computer programming. This

was the work of systems analysis: reducing the disorderly real

world to programmable terms.

In opposition to the school culture of computer science, there

existed, almost from the beginning, a shop culture of

computerization. Computerization was in essence the act of going

out and collecting complexity from the real world in order to

reduce it to programs. For most practical purposes, this

complexity existed in a work organization. Part of the complexity

would be in the form of poorly cataloged paper files, procedure

manuals, etc., but much of it would be in the form of knowledge

possessed by workers, and even collective agreements and

understandings between workers.

It is effectively impossible to capture an accurate and

sufficient description of a traditional work process without the

consent and assistance of the people who presently run it. If

Page 2-13 draft of September 30, 1996

computerization does not have their blessing, they can easily

sabotage it by selectively providing misinformation, often in so

subtle a form that they cannot be said to have lied. They merely

chose not to take any particular pains to ensure that the systems

analyst understood them correctly.

Thus, in its highest form, systems analysis necessarily

ventured into the sociological realm. In contrast to the arid

economics and decision theory of even an enlightened school

culture representative such as Herbert Simon, systems analysis

had to deal with the actual experiences of particular social

classes. Michael Rose, in a representative handbook on

computerization,1 deals with such issues as the way of life and

diminishing social status of clerks, the probable effect of the

computer upon promotion ladders, the company politics of

computerization, etc.

The distinction between school culture and shop culture is not

absolute. Between computer science and total reliance on

practical experience lay the Information Science curricula of

business schools. The Information Science curriculum merged

computer programming with a thorough grounding in all the major

elements of business administration.2

The personal qualities required to collect complexity differ

1. Michael Rose, Computers, Managers, and Society, Penguin Books,
Ltd., Harmondsworth, Middlesex, England, 1969

2. For example, see J. Daniel Couger’s draft curriculum of 1968,
apparently produced in response to the Association for Computing
Machinery’s "Curriculum ’68." Couger’s proposal was published as
"Business DP Degree Programs: A Deficiency," DATAMATION, July,
1968, pp. 49-51.

Page 2-14 draft of September 30, 1996

from those required by the more purely technical sorts of work

within Computer Science proper. There is little need for the more

advanced types of systems programming, and there is rather more

need for an ability to cope with human complexities. Systems

analysts rise and fall, ultimately, not on the basis of their

capacity to perform feats of logic, but rather on the basis of

their ability to establish rapport with the people whose real-

world knowledge they must employ. In this context, the very

strengths of the engineer (and other technical virtuosi such as

hackers) became liabilities. Young men of superlative technical

training are often absurdly arrogant about nontechnical matters,

or even about technical fields other than their own.

Women brought to computerization qualities which filled the

gap left by the male arch-technician. They were more likely to be

broadly educated than men, if not so deeply. Even granted that

the stereotypical sorority girl did not work very hard in

introductory sociology, she was at least there; she did attend

the lectures, and did remember some of their content. That was

considerably more than could be said for her male engineering-

student contemporary, who never found the time to sign up for

sociology at all. Or, if forced to take sociology, and forced to

actually attend, the engineering student, on the rebound from an

’all-nighter’ in his chosen discipline, still managed to make up

a considerable part of his lost sleep. So women were predisposed

to think more broadly than men.

The whole art of conquering complexity which computer

programming offered generated a new kind of technician. This new

Page 2-15 draft of September 30, 1996

technician was not an engineer, but almost an anti-engineer.

Unlike engineers, computer programmers were not forced into a

definite mold by the requirements of their technology. They were

free to be versatile. Computer programmers were not compelled to

turn inwards on the esoterica of their craft as engineers did.

They could look outward, using computer programming as a means to

reinterpret the external world. The style of computer programming

was lighter than that of engineering, with less premium on sheer

tenacity of the bulldog variety, and more emphasis on

receptiveness and imagination. Computer programming drew on all

kinds of abilities traditionally cultivated by women, and

discounted the combative tendencies which boys learned on the

football field or in the boxing ring. By making feminine

characteristics into virtues instead of vices, programming

evolved as a technical field uniquely receptive to women.

Page 2-16 draft of September 30, 1996

