The Personal Conputer Phase, 1980--

Personal Conputers transformed progranm ng.

[put in topic para here]

About 1980, the personal conputer recovered fromits initial
dark age. By this tine, personal conputers were available wth
si xty-four killobytes of nenory-- enough for a journal article--
and, nore inportant, two floppy disks, each with a capacity of a
hundred kil obytes or nore. This capacity was not, as such, enough
for all uses, of course. However, nany, and probably nost, |[|arge
prograns could be deconposed into a series of self-contained
phases or passes, each of which could run on such a machine. The
size and conplexity of the program which could be run was [imted
only by the user’s willingness to repeatedly change fl oppy di sks.

Five years later, at a tine when the IBM PC AT and the Apple
Mclntosh had been introduced, there were floppy disks in
wi despr ead use, which held a whole negabyte, and smal
"W nchester"-type hard disks of five nmegabytes or nore. The Apple
Mclntosh’s Motorolla 68000 processor was not quite conparable to
an |IBM 370, but it was gaining rapidly. At this stage the
personal conputer ceased to be the nmainframe conputer’s poor
relation. An increasing range of personal conputer prograns,
conput er | anguage software included, were not inferior to their

mai nfranme equivall ents, but rather, superior. The nost admred

Page 5-1 draft of Septenber 30, 1996

| anguage of the mainframe era had been IBMs PL/I. IBMs mature
PL/1 Optimzing conpiler, with its libraries, had taken up about
two and a half negabytes of disk space, i1well within the capacity
of a hard-drive-equi pped personal conputer. PL/l was not ported
to the personal conputer for years, and even then, the price tag
was ridiculously high, in excess of $10,000. However, other
programm ng | anguages, notably "C' and Pascal, filled the vacuum
Language software was avail able for $500 at first, and then, as
the market saturated, sone brands were available for $50, and
finally, some public-domain | anguages were avail able for the cost
of copying floppy disks. Wthin a few years after t he
introduction of the personal conmputer, mnmuch of its system
software (operating systens and programm ng | anguages) was back
within the tradition of the mainfrane.

Put another way, the technique of <creating software was
substantially back within the mainframe tradition. The methods of
managi ng and controlling conplexity were once again valid.
However, the progranm ng was not the sanme. Personal conputers
were smaller than mainframe conputers ever had been, and they

1. That is, 202 "tracks" on an IBM 3330 disk drive, wth each
track capable of holding up to nore than 13,000 bytes, depending
on the care and skill with which the data is packed. A track is
the basic unit in which a mainfranme’s disk storage is allocated,
the cybernetic equivallent of a railroad boxcar. W may take it
as read that the IBMers did an efficient job of packing the
conpiler into as few tracks as possi bl e.

IBM Corporation, OS PL/I Optimzing Conpi | er: Gener al
| nformation (# GC33-0001-5), 6th ed., Septenber 1984, San Jose,
California, p. 33

Spotswood D. Stoddard, Principles of Assenbler Language
Programm ng for the 1BM 370, McG aw Hi Il Book Conpany, New YorKk,
1985, p. 517

Page 5-2 draft of Septenber 30, 1996

were cheaper, of course. Personal conputers were far nore
effectually standardized than mai nfranme conputers had been, and
it was conparatively feasible to programthemin the aggregate,
that is, to wite a programto be run on an unknown conputer wth
the confidence that the programwould run on a strange nachine
wi thout needing nodification. Personal conputers required |ess
skill to operate-- unlike mainframe conputers, personal conputers
customarily had their startup procedure built into a Read-Only
Menory. Soon there were systens of automatic secret handshakes
which made it a conparatively sinple mtter to connect up
addi ti onal conponents. A recent standardization initiative 1is
called Plug and Play. By 1960's standards, plug and play had been
attained wth the |IBMPC of 1981. New types of progranm ng
systens, such as spreadsheets and databases, had deskilled many
routine types of programm ng to the point that this programm ng
could be done by nonprogranmers. Sunming up, there was far |ess
routi ne progranmng to do.

However, this worked both ways. There were imensely nore
personal conputers than there had ever been mainfranes. Being
nor e adapt abl e, personal conputers were enployed for nore diverse

tasks than mai nfranes had been.

The new roles for programrers were characteristically skilled
ones. They were skilled either in the sense of doing progranm ng
at a very high level, or in the sense of teaching programm ng and
conputer usage. It is difficult to determne the respective

proportions of the two types-- census data does not nake the

Page 5-3 draft of Septenber 30, 1996

distinction, and in any case, many individuals probably were a
bit of both. At any rate, the category of "Conputer Systens
Anal ysts and Scientists" went from 276,000 in 1983 to 769,000 in
1993, a nearly threefold increase, and in the process, becane the
single | argest category of programers.

The new highly skilled programers were engaged in witing
application prograns to solve classes of problens, rather than
the individual problens that earlier application prograns had
sol ved.

A small mnority of progranmers were engaged in devel oping
really large progranms to run on the personal conputer, prograns
i ntended for general publication, such as word processors.

O her programmers of the sane general type did hardware-
rel ated progranmm ng. Personal conputers were much nore likely to
be connected up to all kinds of specialized electronic devices
t han mai nfranes. They belonged to individuals, and these
individuals were free to sinply install devices in their
machines, in a way which could never have been permtted wth
| arge mainfranmes wused by many different people. For each such
device, there needed to be software. Sonetines there was a whole
program to run with the device, and sonetines there was just a
"device driver" to translate between the electronic device and
sone fairly standard program Either way, the witing of such
progr ans was a refuge for the nost intricacy-1oving of
perfectionists. There were never very many of either of these two
kinds of virtuosi. They tended, however, to enjoy personal

prestige out of all proportion to their nunbers.

Page 5-4 draft of Septenber 30, 1996

Consi derably nore programmers were engaged in doing quite
skilled programmng to create connections between the world of
mai nfrane software and datasets and the personal conputer. This
programm ng included nodifying mainframne prograns to run on
personal conputers; nodifying mainframe prograns to | ook Iike the
prograns which ran on personal conputers; and witing progranms
which permtted big and little conputers to talk to eachot her.

One immediate task was nodifying the existing inventory of
mai nfrane software. A lot of minframe prograns no |onger
bel onged on a mainfranme at all, now that personal conputers were
avai lable. The nost basic litnus test was whether a program
directly involved the sharing of information between two or nore
users. If it did not, then, personal conputers were generally
cheaper. In the first place, a conputer term nal contained nost
of the conponents of a personal conputer, and some conponents
whi ch a personal conputer did not nesssarily need (for exanple, a
nodem). So terminals were not especially cheap. By the tine the
cost of a telephone connection with the big conputer was taken
into account, the supposed econom es of scale of nmainfranes
| ooked pretty hol | ow.

However, personal conputers did not conform to the sane
technical standards as mainfranme conputers. To make a nmainfrane
program avail abl e for use on personal conputers, the program had
to be translated, a nore or |ess |aborious process known as
"porting."

Even if a programwas staying on the mainfrane, its users

woul d be using personal conputers on other occassions, and their

Page 5-5 draft of Septenber 30, 1996

expectations woul d be rai sed. Personal conputers were customarily
much nore "user-friendly" than mainframes. The first persona
conput er software devel opers had devel oped quite new i deas about
what a conmputer’s screen was supposed to look like, drawing on
such unlikely design sources as video ganes and soft-drink
vendi ng machi nes. Users expected to push keys |ike the buttons on
a vending nmachine, instead of entering command words, and they
expected a screen with assorted status lights, counters, etc.,
and continuously displayed lists of options. Mainframe prograns
had to be revanped in order to catch up

The sane thing applied to prograns which were being ported to
the personal conmputer. Even if such prograns had not originally
gqualified as systens programmng, they would do so by the tine
t hey had an acceptabl e user interface.

Then there was what one mght call bridging software to be
witten.1 This software would exist in two or nore parts. One
part would run on the mainfrane conputer, and another part would
run on a personal conputer, and the two parts would talk to
eachot her. Thus only the specific operations which required data
sharing would be done on the conparatively expensive nainfrane
conput er.

Al of this programmng was, for the tinme being, highly
skilled work, of the variety that had traditionally been called
systens programm ng. The term "systens programm ng” was itself

1. An exanple would be what cane to be ternmed "dient-Server”
software, but not all bridging software was necessarily proper
Client-Server.

Page 5-6 draft of Septenber 30, 1996

falling out of wuse, because it no longer nmade a useful
distinction. People who did the kind of work which mght
previ ously been called systens progranmng began to cal
t hensel ves by other ternms such as "software devel oper."” But there
was anot her kind of programm ng work emerging. This was the job
of hel pi ng nonprogrammers to use conputers and even to program
t hem

A new kind of conputer professional energed to deal wth
personal conputers, or nore precisely, wth their partially
skilled wusers. This was the "consultant,” a jack-- or jill-- of
all trades. 1In a sense, a consultant was a new twi st upon the
conputer service bureaus, which had | ong provided conprehensive
service to end wusers. But the consultant operated at the
i ndividual level rather than that of the conpany. Consultants
hel ped i ndi vidual conputer wusers wth their conputers. A
consultant would do a whol e range of tasks, such as buying the
custonmer a suitable conputer and software, installing and setting
up everything, teaching the customer to use the system preparing
short manuals, and even doing a certain anount of sinple
programm ng, generally in the script |anguages associated wth
mai nline application prograns, rather than in a recognized
progranmm ng | anguage. One mark of the consultant was his or her
toolkit, a small |eather zip-fastened wallet with perhaps a dozen
tools required to take a personal conmputer apart and instal
accessori es.
//see ditlea, 6/15/85, p.84

2. Conparatively isolated work

Page 5-7 draft of Septenber 30, 1996

Most progranmm ng work was now made up of relatively fast jobs.
Sof tware devel opnment was still by no neans a snmall job, but its
productivity had been increased considerably. The porting of
prograns, |ike any other formof translation, was a rather faster
job than the original witing, especially since there were
oftenprograns to do part of the translation. But probably the
nost inportant influence was that programmers were now not only
pr oduci ng personal conputer software, but usi ng per sonal
conputers to do it. Personal computers were not that powerful in
the abstract, but they were cheap, and a programmer’s personal
conputer was likely to be nmuch nore powerful than his or her
proportionate share of a big conputer.

Gven all this conmputing power, it was possible to make the
conputer do still nmore of the work of programm ng. This advant age
started even while the programwas still being drafted. Even the
| east i npressive word processors avail able on a personal conputer
were infinitely superior to to the crude line editors, such as
On- Li ne Business Systens’ W.YBUR, 1 which were commonly used wth
a mai nframe conputer’s termnal system Even to change or delete
a single character with aline editor involved an elaborate
rigamarole, as did saving a file. And the Iine editor was itself
a vast inprovenent on the keypunch, which was practically
conparable to a linotype in its general awkwardness.

Once the programwas drafted, it was fed into the | anguage

translator, either a conpiler or an interpreter. The conpilers

1. See OBS WLBUR User Cuide, On-Line Business Systens, Inc., San
Francisco, California, 6th ed., April 1980

Page 5-8 draft of Septenber 30, 1996

used on personal conputers were not nuch better than those on
mai nfranes (and often not as good), but they were vastly nore
avai |l abl e. There was no waiting queue to use one’s own conpiler,
as there often was on the mainfrane. If one wanted a printed
listing, it cane off one’s own printer-- inmediately; instead of
being printed off in its proper turn, by a giant central printer,
sorted out at length by clerks, and placed in a pidgeonhole for
one to retrieve and carry back to one’s termnal. Wth a personal
conputer, it was possible to conpile early and often, letting the
conputer find the errors instead of |aboriously |ooking for them
onesel f.

Once the program passed the conpiler, it was gramatically
correct, but that was not to say that its neaning was what the
programmer intended. U timtely, the only way to find out was to
run the program and see if it did what it was supposed to. This
remains the nost difficult and devious part of debugging a
program Under the old mainfranme reginme, it was especially so. To
determ ne what a program was doi ng, the programmer had to insert
additional instructions causing it to print out nessages, and
fromthese nessages, the programmer woul d have to infer what was
happening in the program s innards where he could not see. One
set of additional instructions would probably not suffice, so
they would have to be renoved-- hopefully wthout inadvertantly
altering the programproper-- and others substituted in their
pl ace. Well, goodbye to all that! Wth the |uxuriance of neans
provided by the personal conputer cane the interactive source-

| evel debugger. This programwas a kind of cybernetic X-ray

Page 5-9 draft of Septenber 30, 1996

machine. It could |look at every intimate detail of a program
even as the programwas running, and could stop the program at
any indicated place and restart it again. Wth a source-Ievel
debuger, it was the easiest thing in the world to find an el usive
and i nprobable error which only manifested itself after a mllion
progr am st eps.

O course, in a few cases, this increased productivity went to
support giant programm ng projects, requiring hundreds of man-
years, but those were rare. Mire typically, what had been a
project for several people becane a project for one or two
peopl e.

// insert the bit about datakulture here

| f tasks were conparatively small in software devel opnent,
they were absolutely small in consulting.
less likely to work wth other

programers, who knew their skills, and continually tested
them in largely noneconomc conpetition, friendly or

ot herw se.

b. Most programmer’s jobs now tended to offer greater

aut onony, but also |less of the protection of the group.

c. Programmers were now surrounded by nonprogranmers, who could

judge themonly on external qualities.

Page 5-10 draft of Septenber 30, 1996

d. A ruch higher proportion of ordinary progranm ng jobs were

now manageri al in substance.

3. Wonen programers becanme sensitive to the inmagery of
conpet ence or inconpetence, because this inmagery determ ned

their effectiveness.

a. If a woman was trying to teach a bunch of mddle managers
how to create spreadsheets, and they wouldn’t listen to her
because she was 'a dunb broad,’ them she was ineffective, no
matter how nuch she knew. By herself, she could not possibly
gather and collate all the information required to create
all the spreadsheets the organi zati on needed. She could only
train and i nduce her m ddl e-aged nmal e students to do so, and
if they chose to take refuge in dunb insolence, there was

very little she could do about it.

b. if she could sonehow surround herself with an aura of the
conventionally macho (for exanple, by clinbing nountains),
she mght nmaneuver nen into accepting her as one of

t hensel ves. Hence the advertising i mgery of amazoni sm

Page 5-11 draft of Septenber 30, 1996

