
V

The Personal Computer Phase, 1980--

Personal Computers transformed programming.

[put in topic para here]

About 1980, the personal computer recovered from its initial

dark age. By this time, personal computers were available with

sixty-four killobytes of memory-- enough for a journal article--

and, more important, two floppy disks, each with a capacity of a

hundred kilobytes or more. This capacity was not, as such, enough

for all uses, of course. However, many, and probably most, large

programs could be decomposed into a series of self-contained

phases or passes, each of which could run on such a machine. The

size and complexity of the program which could be run was limited

only by the user’s willingness to repeatedly change floppy disks.

Five years later, at a time when the IBM PC AT and the Apple

McIntosh had been introduced, there were floppy disks in

widespread use, which held a whole megabyte, and small

"winchester"-type hard disks of five megabytes or more. The Apple

McIntosh’s Motorolla 68000 processor was not quite comparable to

an IBM 370, but it was gaining rapidly. At this stage the

personal computer ceased to be the mainframe computer’s poor

relation. An increasing range of personal computer programs,

computer language software included, were not inferior to their

mainframe equivallents, but rather, superior. The most admired

Page 5-1 draft of September 30, 1996

language of the mainframe era had been IBM’s PL/I. IBM’s mature

PL/I Optimizing compiler, with its libraries, had taken up about

two and a half megabytes of disk space, 1well within the capacity

of a hard-drive-equipped personal computer. PL/I was not ported

to the personal computer for years, and even then, the price tag

was ridiculously high, in excess of $10,000. However, other

programming languages, notably "C" and Pascal, filled the vacuum.

Language software was available for $500 at first, and then, as

the market saturated, some brands were available for $50, and

finally, some public-domain languages were available for the cost

of copying floppy disks. Within a few years after the

introduction of the personal computer, much of its system

software (operating systems and programming languages) was back

within the tradition of the mainframe.

Put another way, the technique of creating software was

substantially back within the mainframe tradition. The methods of

managing and controlling complexity were once again valid.

However, the programming was not the same. Personal computers

were smaller than mainframe computers ever had been, and they

1. That is, 202 "tracks" on an IBM 3330 disk drive, with each
track capable of holding up to more than 13,000 bytes, depending
on the care and skill with which the data is packed. A track is
the basic unit in which a mainframe’s disk storage is allocated,
the cybernetic equivallent of a railroad boxcar. We may take it
as read that the IBM’ers did an efficient job of packing the
compiler into as few tracks as possible.

IBM Corporation, OS PL/I Optimizing Compiler: General
Information (# GC33-0001-5), 6th ed., September 1984, San Jose,
California, p. 33

Spotswood D. Stoddard, Principles of Assembler Language
Programming for the IBM 370, McGraw-Hill Book Company, New York,
1985, p. 517

Page 5-2 draft of September 30, 1996

were cheaper, of course. Personal computers were far more

effectually standardized than mainframe computers had been, and

it was comparatively feasible to program them in the aggregate,

that is, to write a program to be run on an unknown computer with

the confidence that the program would run on a strange machine

without needing modification. Personal computers required less

skill to operate-- unlike mainframe computers, personal computers

customarily had their startup procedure built into a Read-Only

Memory. Soon there were systems of automatic secret handshakes

which made it a comparatively simple matter to connect up

additional components. A recent standardization initiative is

called Plug and Play. By 1960’s standards, plug and play had been

attained with the IBM PC of 1981. New types of programming

systems, such as spreadsheets and databases, had deskilled many

routine types of programming to the point that this programming

could be done by nonprogrammers. Summing up, there was far less

routine programming to do.

However, this worked both ways. There were immensely more

personal computers than there had ever been mainframes. Being

more adaptable, personal computers were employed for more diverse

tasks than mainframes had been.

The new roles for programmers were characteristically skilled

ones. They were skilled either in the sense of doing programming

at a very high level, or in the sense of teaching programming and

computer usage. It is difficult to determine the respective

proportions of the two types-- census data does not make the

Page 5-3 draft of September 30, 1996

distinction, and in any case, many individuals probably were a

bit of both. At any rate, the category of "Computer Systems

Analysts and Scientists" went from 276,000 in 1983 to 769,000 in

1993, a nearly threefold increase, and in the process, became the

single largest category of programmers.

The new highly skilled programmers were engaged in writing

application programs to solve classes of problems, rather than

the individual problems that earlier application programs had

solved.

A small minority of programmers were engaged in developing

really large programs to run on the personal computer, programs

intended for general publication, such as word processors.

Other programmers of the same general type did hardware-

related programming. Personal computers were much more likely to

be connected up to all kinds of specialized electronic devices

than mainframes. They belonged to individuals, and these

individuals were free to simply install devices in their

machines, in a way which could never have been permitted with

large mainframes used by many different people. For each such

device, there needed to be software. Sometimes there was a whole

program to run with the device, and sometimes there was just a

"device driver" to translate between the electronic device and

some fairly standard program. Either way, the writing of such

programs was a refuge for the most intricacy-loving of

perfectionists. There were never very many of either of these two

kinds of virtuosi. They tended, however, to enjoy personal

prestige out of all proportion to their numbers.

Page 5-4 draft of September 30, 1996

Considerably more programmers were engaged in doing quite

skilled programming to create connections between the world of

mainframe software and datasets and the personal computer. This

programming included modifying mainframe programs to run on

personal computers; modifying mainframe programs to look like the

programs which ran on personal computers; and writing programs

which permitted big and little computers to talk to eachother.

One immediate task was modifying the existing inventory of

mainframe software. A lot of mainframe programs no longer

belonged on a mainframe at all, now that personal computers were

available. The most basic litmus test was whether a program

directly involved the sharing of information between two or more

users. If it did not, then, personal computers were generally

cheaper. In the first place, a computer terminal contained most

of the components of a personal computer, and some components

which a personal computer did not nesssarily need (for example, a

modem). So terminals were not especially cheap. By the time the

cost of a telephone connection with the big computer was taken

into account, the supposed economies of scale of mainframes

looked pretty hollow.

However, personal computers did not conform to the same

technical standards as mainframe computers. To make a mainframe

program available for use on personal computers, the program had

to be translated, a more or less laborious process known as

"porting."

Even if a program was staying on the mainframe, its users

would be using personal computers on other occassions, and their

Page 5-5 draft of September 30, 1996

expectations would be raised. Personal computers were customarily

much more "user-friendly" than mainframes. The first personal

computer software developers had developed quite new ideas about

what a computer’s screen was supposed to look like, drawing on

such unlikely design sources as video games and soft-drink

vending machines. Users expected to push keys like the buttons on

a vending machine, instead of entering command words, and they

expected a screen with assorted status lights, counters, etc.,

and continuously displayed lists of options. Mainframe programs

had to be revamped in order to catch up.

The same thing applied to programs which were being ported to

the personal computer. Even if such programs had not originally

qualified as systems programming, they would do so by the time

they had an acceptable user interface.

Then there was what one might call bridging software to be

written.1 This software would exist in two or more parts. One

part would run on the mainframe computer, and another part would

run on a personal computer, and the two parts would talk to

eachother. Thus only the specific operations which required data

sharing would be done on the comparatively expensive mainframe

computer.

All of this programming was, for the time being, highly

skilled work, of the variety that had traditionally been called

systems programming. The term "systems programming" was itself

1. An example would be what came to be termed "Client-Server"
software, but not all bridging software was necessarily proper
Client-Server.

Page 5-6 draft of September 30, 1996

falling out of use, because it no longer made a useful

distinction. People who did the kind of work which might

previously been called systems programming began to call

themselves by other terms such as "software developer." But there

was another kind of programming work emerging. This was the job

of helping nonprogrammers to use computers and even to program

them.

A new kind of computer professional emerged to deal with

personal computers, or more precisely, with their partially

skilled users. This was the "consultant," a jack-- or jill-- of

all trades. In a sense, a consultant was a new twist upon the

computer service bureaus, which had long provided comprehensive

service to end users. But the consultant operated at the

individual level rather than that of the company. Consultants

helped individual computer users with their computers. A

consultant would do a whole range of tasks, such as buying the

customer a suitable computer and software, installing and setting

up everything, teaching the customer to use the system, preparing

short manuals, and even doing a certain amount of simple

programming, generally in the script languages associated with

mainline application programs, rather than in a recognized

programming language. One mark of the consultant was his or her

toolkit, a small leather zip-fastened wallet with perhaps a dozen

tools required to take a personal computer apart and install

accessories.

//see ditlea, 6/15/85, p.84

2. Comparatively isolated work.

Page 5-7 draft of September 30, 1996

Most programming work was now made up of relatively fast jobs.

Software development was still by no means a small job, but its

productivity had been increased considerably. The porting of

programs, like any other form of translation, was a rather faster

job than the original writing, especially since there were

oftenprograms to do part of the translation. But probably the

most important influence was that programmers were now not only

producing personal computer software, but using personal

computers to do it. Personal computers were not that powerful in

the abstract, but they were cheap, and a programmer’s personal

computer was likely to be much more powerful than his or her

proportionate share of a big computer.

Given all this computing power, it was possible to make the

computer do still more of the work of programming. This advantage

started even while the program was still being drafted. Even the

least impressive word processors available on a personal computer

were infinitely superior to to the crude line editors, such as

On-Line Business Systems’ WLYBUR,1 which were commonly used with

a mainframe computer’s terminal system. Even to change or delete

a single character with a line editor involved an elaborate

rigamarole, as did saving a file. And the line editor was itself

a vast improvement on the keypunch, which was practically

comparable to a linotype in its general awkwardness.

Once the program was drafted, it was fed into the language

translator, either a compiler or an interpreter. The compilers

1. See OBS WYLBUR User Guide, On-Line Business Systems, Inc., San
Francisco, California, 6th ed., April 1980

Page 5-8 draft of September 30, 1996

used on personal computers were not much better than those on

mainframes (and often not as good), but they were vastly more

available. There was no waiting queue to use one’s own compiler,

as there often was on the mainframe. If one wanted a printed

listing, it came off one’s own printer-- immediately; instead of

being printed off in its proper turn, by a giant central printer,

sorted out at length by clerks, and placed in a pidgeonhole for

one to retrieve and carry back to one’s terminal. With a personal

computer, it was possible to compile early and often, letting the

computer find the errors instead of laboriously looking for them

oneself.

Once the program passed the compiler, it was gramatically

correct, but that was not to say that its meaning was what the

programmer intended. Ultimately, the only way to find out was to

run the program, and see if it did what it was supposed to. This

remains the most difficult and devious part of debugging a

program. Under the old mainframe regime, it was especially so. To

determine what a program was doing, the programmmer had to insert

additional instructions causing it to print out messages, and

from these messages, the programmer would have to infer what was

happening in the program’s innards where he could not see. One

set of additional instructions would probably not suffice, so

they would have to be removed-- hopefully without inadvertantly

altering the program proper-- and others substituted in their

place. Well, goodbye to all that! With the luxuriance of means

provided by the personal computer came the interactive source-

level debugger. This program was a kind of cybernetic X-ray

Page 5-9 draft of September 30, 1996

machine. It could look at every intimate detail of a program,

even as the program was running, and could stop the program at

any indicated place and restart it again. With a source-level

debuger, it was the easiest thing in the world to find an elusive

and improbable error which only manifested itself after a million

program steps.

Of course, in a few cases, this increased productivity went to

support giant programming projects, requiring hundreds of man-

years, but those were rare. More typically, what had been a

project for several people became a project for one or two

people.

// insert the bit about datakulture here

If tasks were comparatively small in software development,

they were absolutely small in consulting.

less likely to work with other

programmers, who knew their skills, and continually tested

them in largely noneconomic competition, friendly or

otherwise.

b. Most programmer’s jobs now tended to offer greater

autonomy, but also less of the protection of the group.

c. Programmers were now surrounded by nonprogrammers, who could

judge them only on external qualities.

Page 5-10 draft of September 30, 1996

d. A much higher proportion of ordinary programming jobs were

now managerial in substance.

3. Women programmers became sensitive to the imagery of

competence or incompetence, because this imagery determined

their effectiveness.

a. If a woman was trying to teach a bunch of middle managers

how to create spreadsheets, and they wouldn’t listen to her

because she was ’a dumb broad,’ them she was ineffective, no

matter how much she knew. By herself, she could not possibly

gather and collate all the information required to create

all the spreadsheets the organization needed. She could only

train and induce her middle-aged male students to do so, and

if they chose to take refuge in dumb insolence, there was

very little she could do about it.

b. if she could somehow surround herself with an aura of the

conventionally macho (for example, by climbing mountains),

she might maneuver men into accepting her as one of

themselves. Hence the advertising imagery of amazonism.

Page 5-11 draft of September 30, 1996

